
Architectural Model Inference from Code for
ROS-based Robotics Systems

Tobias Dürschmid, Christopher S. Timperley, David Garlan, and Claire Le Goues
Carnegie Mellon University, Pittsburgh, PA, USA
{tdurschm, ctimperl, garlan, clegoues}@cs.cmu.edu

Abstract—Model-based analysis is a common technique to1

identify incorrect behavioral composition of complex, safety-2

critical systems, such as robotics systems. However, creating3

structural and behavioral models for hundreds of software4

components manually is often a labor-intensive and error-prone5

process. In this paper, we present our past, current, and ongoing6

work to infer structural and behavioral models for components of7

systems based on the Robot Operating System (ROS) using static8

analysis by exploiting assumptions about the usage of the ROS9

framework. We see this work as a contribution towards making10

well-proven and powerful but infrequently used methods of11

model-based analysis more accessible and economical in practice12

to make robotics systems more reliable and safe.13

I. INTRODUCTION14

Robotics systems, especially systems written for the Robot15

Operating System (ROS) [1], are often component-based:16

They are implemented as independently deployable run-time17

units that communicate with each other primarily via mes-18

sages [1]–[5]. The composition and evolution of software19

components is error prone, due to undocumented assumptions20

that might change over time. When composed inconsistently,21

the behavior of these systems can be unexpected, such as a22

component indefinitely waiting, not changing to the desired23

state, ignoring inputs, message loss, or publishing messages24

at an unexpectedly high frequency [6]–[8].25

Software architects commonly use model-based architecture26

analysis to ensure the safety and correct composition of com-27

ponents [9]–[16]. Based on structural and behavioral models,28

such as state machines, of the current system, architects29

can find inconsistencies or predict the impact of changes30

on the system’s behavior. However, in practice, due to the31

complexity of robotics systems, creating models manually is32

time-consuming and difficult [9], [13], [17]. This motivates33

work on automated model recovery to reduce the modeling34

effort and make formal analysis more accessible in practice.35

To address the challenge of automatically inferring behav-36

ioral component models for ROS-based systems, we propose37

to use static analysis of the system’s source code written in38

C++. In general, inferring behavioral models statically is unde-39

cidable [18]. Even a partial solution is practically challenging,40

because the analysis needs to infer what subset of arbitrary41

C++ code gets compiled to be executed as a single component,42

what subset of this component’s code communicates with43

other components, and under what situations this code for44

inter-component-communication is reachable. Fortunately, the45

following observations about the ROS ecosystem make this 46

problem tractable for most cases in practice: 47

1) Component architectures and behaviors are defined via 48

Application Programming Interface (API) calls that have 49

well-understood architectural semantics [19]. 50

2) The composition and configuration of components to 51

build larger systems is done in separate architecture 52

configuration files (i.e., launch files). Most of these result 53

in “quasi-static” systems. That is, architectures rarely 54

change following run-time initialization [19]. 55

3) Behavioral patterns, such as periodically sending mes- 56

sages, are usually implemented using features provided 57

by the ROS framework. Hence, most instances of those 58

patterns follow a similar implementation template. 59

Based on these observations, we present the following 60

contributions: 61

1) An approach and open-source implementation to stati- 62

cally infer component-connector models and component 63

behavioral models from ROS code. 64

2) The first available data set of 29 architecture misconfig- 65

uration bugs across 5 open-source ROS system and 106 66

component models of the Autoware system that we used 67

to evaluate our approach. 68

3) Our ongoing and future work to combine static analysis 69

with dynamic analysis to add timing information and 70

resolve known unknown in the models inferred statically. 71

II. INFERRING COMPONENT-CONNECTOR MODELS 72

Our existing tool ROSDiscover [5] statically recovers 73

component-connector models to obtain structural models of 74

individual ROS components from their C++ source code. Each 75

model structural description of a given node in terms of its 76

interface (i.e., topics, services, and actions). 77

First, ROSDiscover recovers a parametric component in- 78

terface models containing the component’s ports by looking 79

for API calls that define subscribers, publishers, actions, or 80

services and uses symbolic execution to resolve the possible 81

values of API call arguments. Then, it connects individ- 82

ual component interface models to full-system component- 83

connector models by analyzing the launch files that connect the 84

ports of component and instantiates parameter of the interface 85

models. Finally, it finds architecture reconfiguration bugs by 86

checking well-formedness rules specified in first-order logic 87

on the system model. 88



In our evaluation on five complex real-world open-source89

ROS systems, we found that ROSDiscover’s recovery of90

component interface models has an accuracy of 85%, recovery91

of component-connector models has an accuracy of 90% [5].92

III. INFERRING COMPONENT BEHAVIORAL MODELS93

While ROSDiscover can recover structural models, it does94

not reconstruct component behavior, i.e., dynamic aspects that95

describe how the component reacts to inputs and how it pro-96

duces outputs, such as whether a component sends a message97

in response to receiving an input, whether it sends messages98

periodically or sporadically, and what state conditions or inputs99

determine whether it sends a message. Therefore we developed100

an extension, called ROSInfer that statically infers reactive,101

periodic, and state-based behavior of ROS components to102

create a state machine of architecturally-relevant behavior.103

Similar to recovering structural models, we can also made104

the observation that the ROS API is commonly used to imple-105

ment architecturally-relevant behavior. By looking for the API106

calls that define callbacks for receiving a message (ros::107

NodleHandle::subscribe), sending a message (ros::108

Publisher::publish), or sleeping for the remaining time109

of a periodic interval (ros::Rate::sleep), we recover110

models of architecturally-relevant behavior that can then be111

used for model-based analysis of the system. ROSInfer112

reconstructs state machine models by identifying ROS API113

calls that implement these types of behavior, their argument114

values, and the control flow between them.115

We recover reactive behavior by finding control flow from a116

subscriber callback to a publish call. This establishes causality117

between receiving a message and sending another message.118

To recovery periodic behavior, ROSInfer looks for publish119

calls within loops that have infinite conditions (true or120

ros::ok) that call sleep on a rate object. Recovering the121

frequency defined in the rate constructor tells lets us recover122

the target frequency of the periodic behavior.123

To cover state-depended behavior, ROSInfer finds state124

variables, their initial values, and state transitions. Our heuris-125

tics to identify state variables are (1) the variable is used126

in control conditions of architecturally-relevant behavior (i.e.,127

functions that send messages, functions that change state128

variables, and of their transitive callers) and (2) the variable is129

in global or component-wide scope, such as member variables130

of component classes or non-local variables. To infer the initial131

state (i.e., the initial values for each state variable) of the132

component, ROSInfer searches for the first definitions of the133

variables either in their declaration or the main method. After134

the state variables are identified, ROSInfer infers transition135

conditions by combining control conditions of architecturally136

relevant behavior using logical operators and and not de-137

pending on whether the path is taking a negation branch (e.g.,138

the else branch of an if-statement).139

We evaluated ROSInfer on 106 components of Auto-140

ware,1 the world’s leading open source autonomous driving141

1https://www.autoware.org

software, by comparing the recovered behavior with a ground- 142

truth obtained by manually inspecting the code and creating 143

hand-written models of their actual behavior. If a behavior was 144

not found or a value not recovered, we traces this false negative 145

back to limitations of the implementation that can be fixed 146

with more engineering effort or limitations of the approach. 147

We find that on our data set, the approach could recover 100% 148

of periodic behaviors, 84% of reactive behaviors, 55% of state 149

variables, and 67% of state transitions. 150

IV. COMBINATION OF STATIC AND DYNAMIC ANALYSIS 151

As the results from our evaluation of our current work 152

have shown even perfect static analysis still leaves incomplete 153

models in some cases. Furthermore, static analysis cannot infer 154

execution times of tasks, producing models that cannot be used 155

for most kinds of performance analysis, bottle neck analysis, 156

or analysis of race condition. Fortunately, since the models 157

are directly derived from the source code, they could also be 158

used to guide the creation of experiments for dynamic analysis 159

to fill in the unknown values in incomplete models, or to 160

identify representative paths through the system that be used 161

for profiling. This motivates future work on combining static 162

and automated dynamic analysis to infer behavioral component 163

models that contain more information about the components. 164

We are currently planning to extent ROSInfer with dy- 165

namic analysis that automatically deploys components, sys- 166

tematically sends messages to it based on the known state 167

machines to collect timing data or to resolve known unknowns. 168

V. POSSIBLE ANALYSES FOR INFERRED MODELS 169

Combining behavioral component models with component- 170

port-connector models, allows for analyses of intra- 171

component-data-flow. Structural models alone do not 172

contain information how the inputs of a component are used 173

and what is needed for the component to produce an output. 174

Having input-output state machine models like the ones 175

ROSInfer infers, allows to trace which messages at one 176

component cause messages to be sent in other parts of the 177

system. To check whether the components of a system are 178

composed correctly, properties such as “An input at input 179

port I1 of component Ca can/must result in an output at 180

output port O1 of Cb” can be checked via discrete event 181

simulation [20] or logical reasoning [21]. 182

Furthermore, synchronizing the resulting component state 183

machines at their input/output messages allows for checking 184

arbitrary Linear Temporal Logic (LTL) properties via ap- 185

proaches such as PRISM [22]. Thereby safety and security 186

properties, such as the component changing to a desired state, 187

no messages getting lost or ignored, or a component eventually 188

publish a certain message, can be checked [23]–[25]. 189

Additionally, knowing the frequencies at which periodic 190

messages get published allows to propagate these frequencies 191

to all transitive receivers of this data stream so allow to check 192

the desired frequency of message publishing further down the 193

data stream to avoid unexpectedly high publishing frequencies. 194

https://www.autoware.org


REFERENCES195

[1] M. Quigley, “Ros: An open-source robot operating system,” in Inter-196

national Conference on Robotics and Automation Workshop on Open197

Source Software, 2009, [Online]. Available: http : / / lars . mec . ua . pt /198

public / LAR % 20Projects / BinPicking / 2016 RodrigoSalgueiro / LIB /199

ROS/icraoss09-ROS.pdf.200

[2] A. Ahmad and M. A. Babar, “Software architectures for robotic sys-201

tems: A systematic mapping study,” Journal of Systems and Software,202

vol. 122, pp. 16–39, 2016, DOI: https://doi.org/10.1016/j.jss.2016.08.203

039.204

[3] M. Y. Jung, A. Deguet, and P. Kazanzides, “A component-based205

architecture for flexible integration of robotic systems,” in International206

Conference on Intelligent Robots and Systems, 2010, pp. 6107–6112,207

DOI: 10.1109/IROS.2010.5652394.208

[4] D. Brugali, A. Brooks, A. Cowley, et al., “Trends in Component-209

Based Robotics,” in Software Engineering for Experimental Robotics.210

Springer Berlin Heidelberg, 2007, pp. 135–142, DOI: 10.1007/978-3-211

540-68951-5 8.212

[5] C. S. Timperley, T. Dürschmid, B. Schmerl, D. Garlan, and C.213

Le Goues, “Rosdiscover: Statically detecting run-time architecture214

misconfigurations in robotics systems,” in Proceedings of the 19th215

IEEE International Conference on Software Architecture., ser. ICSA216

’22, IEEE, 2022, pp. 112–123, DOI: 10.1109/ICSA53651.2022.00019.217

[6] R. Halder, J. Proença, N. Macedo, and A. Santos, “Formal Verification218

of ROS-Based Robotic Applications Using Timed-Automata,” in Inter-219

national FME Workshop on Formal Methods in Software Engineering220

(FormaliSE), 2017, pp. 44–50, DOI: 10.1109/FormaliSE.2017.9.221

[7] P. Canelas, M. Tavares, R. Cordeiro, A. Fonseca, and C. S. Timperley,222

“An Experience Report on Challenges in Learning the Robot Operating223

System,” in International Workshop on Robotics Software Engineering224

(RoSE), 2022, pp. 33–38, DOI: 10.1145/3526071.3527521.225

[8] C. S. Timperley, G. van der Hoorn, A. Santos, H. Deshpande, and226

A. Wasowski, “ROBUST: 221 Bugs in the Robot Operating System,”227

[9] E. de Araújo Silva, E. Valentin, J. R. H. Carvalho, and R. da Silva228

Barreto, “A survey of model driven engineering in robotics,” Journal229

of Computer Languages, vol. 62, p. 101 021, 2021, DOI: https://doi.230

org/10.1016/j.cola.2020.101021.231

[10] D. Brugali, “Model-Driven Software Engineering in Robotics,” IEEE232

Robotics & Automation Magazine, vol. 22, no. 3, pp. 155–166, 2015,233

DOI: 10.1109/MRA.2015.2452201.234

[11] C. Newcombe, “Why Amazon Chose TLA +,” in Abstract State Ma-235

chines, Alloy, B, TLA, VDM, and Z, Springer Berlin Heidelberg, 2014,236

pp. 25–39, DOI: 10.1007/978-3-662-43652-3 3.237

[12] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and238

M. Deardeuff, “How amazon web services uses formal methods,”239

Commun. ACM, vol. 58, no. 4, pp. 66–73, Mar. 2015, DOI: 10.1145/240

2699417.241

[13] M. Weißmann, S. Bedenk, C. Buckl, and A. Knoll, “Model Checking242

Industrial Robot Systems,” in Model Checking Software, Springer243

Berlin Heidelberg, 2011, pp. 161–176, DOI: 10 . 1007 / 978 - 3 - 642 -244

22306-8 11.245

[14] M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, and M. Fisher,246

“Formal Specification and Verification of Autonomous Robotic Sys-247

tems: A Survey,” ACM Comput. Surv., vol. 52, no. 5, Sep. 2019, DOI:248

10.1145/3342355.249

[15] H. Araujo, M. R. Mousavi, and M. Varshosaz, “Testing, Validation,250

and Verification of Robotic and Autonomous Systems: A Systematic251

Review,” ACM Trans. Softw. Eng. Methodol., Jun. 2022, Just Accepted,252

DOI: 10.1145/3542945.253

[16] F. Ingrand, “Recent Trends in Formal Validation and Verification of254

Autonomous Robots Software,” in International Conference on Robotic255

Computing (IRC), 2019, pp. 321–328, DOI: 10.1109/IRC.2019.00059.256

[17] M. Dahl, K. Bengtsson, M. Fabian, and P. Falkman, “Automatic257

Modeling and Simulation of Robot Program Behavior in Integrated258

Virtual Preparation and Commissioning,” Procedia Manufacturing,259

vol. 11, pp. 284–291, 2017, International Conference on Flexible260

Automation and Intelligent Manufacturing, DOI: https: / /doi .org/10.261

1016/j.promfg.2017.07.107.262

[18] W. Landi, “Undecidability of Static Analysis,” ACM Lett. Program.263

Lang. Syst., vol. 1, no. 4, pp. 323–337, Dec. 1992, DOI: 10 . 1145 /264

161494.161501.265

[19] A. Santos, A. Cunha, N. Macedo, R. Arrais, and F. N. dos Santos,266

“Mining the usage patterns of ROS primitives,” in International267

Conference on Intelligent Robots and Systems (IROS ’17), IEEE, 2017, 268

pp. 3855–3860, DOI: 10.1109/IROS.2017.8206237. 269

[20] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner, “Architecture- 270

Based Reliability Prediction with the Palladio Component Model,” 271

IEEE Transactions on Software Engineering (TSE), vol. 38, no. 6, 272

pp. 1319–1339, Nov. 2012, DOI: 10.1109/TSE.2011.94. 273

[21] M. Kmimech, M. T. Bhiri, and P. Aniorte, “Checking component as- 274

sembly in acme: An approach applied on uml 2.0 components model,” 275

in 2009 Fourth International Conference on Software Engineering 276

Advances, 2009, pp. 494–499, DOI: 10.1109/ICSEA.2009.78. 277

[22] M. Kwiatkowska, G. Norman, and D. Parker, “Prism: Probabilis- 278

tic symbolic model checker,” in Computer Performance Evaluation: 279

Modelling Techniques and Tools, Springer Berlin Heidelberg, 2002, 280

pp. 200–204. 281

[23] A. Gomes, A. Mota, A. Sampaio, F. Ferri, and J. Buzzi, “Systematic 282

model-based safety assessment via probabilistic model checking,” in 283

Leveraging Applications of Formal Methods, Verification, and Valida- 284

tion, Springer Berlin Heidelberg, 2010, pp. 625–639. 285

[24] X. Ge, R. F. Paige, and J. A. McDermid, “Analysing system failure 286

behaviours with prism,” in 2010 Fourth International Conference on 287

Secure Software Integration and Reliability Improvement Companion, 288

2010, pp. 130–136, DOI: 10.1109/SSIRI-C.2010.32. 289

[25] N. Alexiou, S. Basagiannis, and S. Petridou, “Formal security analysis 290

of near field communication using model checking,” Computers & 291

Security, vol. 60, pp. 1–14, 2016, DOI: https://doi.org/10.1016/j.cose. 292

2016.03.002. 293

http://lars.mec.ua.pt/public/LAR%20Projects/BinPicking/2016_RodrigoSalgueiro/LIB/ROS/icraoss09-ROS.pdf
http://lars.mec.ua.pt/public/LAR%20Projects/BinPicking/2016_RodrigoSalgueiro/LIB/ROS/icraoss09-ROS.pdf
http://lars.mec.ua.pt/public/LAR%20Projects/BinPicking/2016_RodrigoSalgueiro/LIB/ROS/icraoss09-ROS.pdf
http://lars.mec.ua.pt/public/LAR%20Projects/BinPicking/2016_RodrigoSalgueiro/LIB/ROS/icraoss09-ROS.pdf
http://lars.mec.ua.pt/public/LAR%20Projects/BinPicking/2016_RodrigoSalgueiro/LIB/ROS/icraoss09-ROS.pdf
https://doi.org/https://doi.org/10.1016/j.jss.2016.08.039
https://doi.org/https://doi.org/10.1016/j.jss.2016.08.039
https://doi.org/https://doi.org/10.1016/j.jss.2016.08.039
https://doi.org/10.1109/IROS.2010.5652394
https://doi.org/10.1007/978-3-540-68951-5_8
https://doi.org/10.1007/978-3-540-68951-5_8
https://doi.org/10.1007/978-3-540-68951-5_8
https://doi.org/10.1109/ICSA53651.2022.00019
https://doi.org/10.1109/FormaliSE.2017.9
https://doi.org/10.1145/3526071.3527521
https://doi.org/https://doi.org/10.1016/j.cola.2020.101021
https://doi.org/https://doi.org/10.1016/j.cola.2020.101021
https://doi.org/https://doi.org/10.1016/j.cola.2020.101021
https://doi.org/10.1109/MRA.2015.2452201
https://doi.org/10.1007/978-3-662-43652-3_3
https://doi.org/10.1145/2699417
https://doi.org/10.1145/2699417
https://doi.org/10.1145/2699417
https://doi.org/10.1007/978-3-642-22306-8_11
https://doi.org/10.1007/978-3-642-22306-8_11
https://doi.org/10.1007/978-3-642-22306-8_11
https://doi.org/10.1145/3342355
https://doi.org/10.1145/3542945
https://doi.org/10.1109/IRC.2019.00059
https://doi.org/https://doi.org/10.1016/j.promfg.2017.07.107
https://doi.org/https://doi.org/10.1016/j.promfg.2017.07.107
https://doi.org/https://doi.org/10.1016/j.promfg.2017.07.107
https://doi.org/10.1145/161494.161501
https://doi.org/10.1145/161494.161501
https://doi.org/10.1145/161494.161501
https://doi.org/10.1109/IROS.2017.8206237
https://doi.org/10.1109/TSE.2011.94
https://doi.org/10.1109/ICSEA.2009.78
https://doi.org/10.1109/SSIRI-C.2010.32
https://doi.org/https://doi.org/10.1016/j.cose.2016.03.002
https://doi.org/https://doi.org/10.1016/j.cose.2016.03.002
https://doi.org/https://doi.org/10.1016/j.cose.2016.03.002

	Introduction
	Inferring Component-Connector Models
	Inferring Component Behavioral Models
	Combination of Static and Dynamic Analysis
	Possible Analyses for Inferred Models

