
Understanding Misconfigurations in ROS: An Empirical Study
and Current Approaches

Paulo Canelas∗

pasantos@andrew.cmu.edu
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA

Bradley Schmerl
schmerl@cmu.edu

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA

Alcides Fonseca
amfonseca@fc.ul.pt

LASIGE, University of Lisbon
Lisboa, Portugal

Christopher S. Timperley
ctimperley@cmu.edu

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA

Abstract

The Robot Operating System (ROS) is a popular framework and

ecosystem that allows developers to build robot software systems

from reusable, o�-the-shelf components. Systems are often built

by customizing and connecting components via con�guration �les.

While reusable components theoretically allow rapid prototyping,

ensuring proper con�guration and connection is challenging, as

evidenced by numerous questions on developer forums. Developers

must abide to the often unchecked and unstated assumptions of

individual components. Failure to do so can result in miscon�gura-

tions that are only discovered during �eld deployment, at which

point errors may lead to unpredictable and dangerous behavior. De-

spite miscon�gurations having been studied in the broader context

of software engineering, robotics software (and ROS in particu-

lar) poses domain-speci�c challenges with potentially disastrous

consequences. To understand and improve the reliability of ROS

projects, it is critical to identify the types of miscon�gurations faced

by developers. To that end, we perform a study of ROS Answers, a

Q&A platform, to identify and categorize miscon�gurations that

occur during ROS development. We then conduct a literature re-

view to assess the coverage of these miscon�gurations by existing

detection techniques. In total, we �nd 12 high-level categories and

50 sub-categories of miscon�gurations. Of these categories, 27 are

not covered by existing techniques. To conclude, we discuss how

to tackle those miscon�gurations in future work.

CCS Concepts

• Computer systems organization→ Robotics; • General and

reference → Empirical studies.

∗Also with LASIGE, University of Lisbon, Portugal.

ISSTA ’24, September 16–20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680350

Keywords

ROS, Miscon�gurations, Empirical Study, Literature Review

ACM Reference Format:

Paulo Canelas, Bradley Schmerl, Alcides Fonseca, and Christopher S. Tim-

perley. 2024. Understanding Miscon�gurations in ROS: An Empirical Study

and Current Approaches. In Proceedings of the 33rd ACM SIGSOFT In-

ternational Symposium on Software Testing and Analysis (ISSTA ’24), Sep-

tember 16–20, 2024, Vienna, Austria. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3650212.3680350

1 Introduction

The Robot Operating System (ROS), known as the “Linux of Ro-

botics”, is the de facto open-source framework for building robot

software [42]. ROS’s package ecosystem provides developers with

reusable, o�-the-shelf components that implement common robot

functions (e.g., perception, planning, localization, drivers) [15, 32].

In theory, ROS allows developers to quickly prototype robot soft-

ware by integrating such components and adjusting their parame-

ters via con�guration �les (e.g., Launch XML, ROS Param YAML)

to match their intended application and environment.

Despite the relative ease of integrating components using con-

�guration �les in ROS, correctly con�guring systems presents a

considerable challenge. For instance, the software’s con�guration

depends on the robot’s hardware and operating environment (e.g.,

speci�c types of sensors and their placement in the robot).1 When

communicating with each other, components must make matching

assumptions about their environment (e.g., when the camera is

10 cm above the wheels, a reference transformation is required).2

Finally, timeliness properties must be considered when integrating

components to avoid negatively impacting robot behavior (e.g.,

frames may be dropped when processing high-resolution image

streams, leading to unstable and dangerous motion).3

To provide plug-and-play functionality, ROS components are typ-

ically required tomake assumptions about the context in which they

are used (e.g., a topic should receive messages of the correct type at

a certain frequency) that are neither checked nor documented [15].

1https://answers.ros.org/question/59087
2https://answers.ros.org/question/227092
3https://answers.ros.org/question/248656

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1161

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-0154-8989
https://orcid.org/0000-0001-7828-622X
https://orcid.org/0000-0002-0879-4015
https://orcid.org/0000-0002-9785-324X
https://doi.org/10.1145/3650212.3680350
https://doi.org/10.1145/3650212.3680350
https://answers.ros.org/question/59087
https://answers.ros.org/question/227092
https://answers.ros.org/question/248656
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650212.3680350&domain=pdf&date_stamp=2024-09-11

ISSTA ’24, September 16–20, 2024, Vienna, Austria Paulo Canelas, Bradley Schmerl, Alcides Fonseca, and Christopher S. Timperley

Miscon�gurations occur when one or more components make dif-

ferent, con�icting assumptions about the robot, leading to unin-

tended and potentially dangerous behavior (e.g., property damage,

human harm) during deployment. Given the importance of safety

within this domain, it is vital to identify miscon�gurations before

the robot is deployed, and as early as possible. To that end, the

robotics software engineering community has begun to develop

tools to detect certain miscon�gurations, such as those related to

physical units [29], architecture [51], and reference frames [28].

To systematically tackle the miscon�guration problem, it is criti-

cal to understand the types of miscon�gurations that occur in the

wild and whether existing tools are designed to detect them. Based

on our own experiences with ROS, we know that physical units,

architectural, and reference frames are not ROS’s only categories

of miscon�guration. Software miscon�gurations have been thor-

oughly studied in di�erent contexts of software development (e.g.,

security [14, 43], databases [36, 60], cloud computing [25, 53, 62]

and networks [39]). However, miscon�gurations within ROS are

inherently di�erent due to their cyber-physical nature.

In this work, we set out to identify the broader set of miscon-

�gurations that impact ROS systems and to determine which

detection techniques address them and which miscon�gu-

ration types are going undetected. This knowledge can guide

future research in the robotics software engineering community in

developing novel tools and techniques to address them.

We �rst derive a taxonomy of miscon�gurations within ROS sys-

tems by conducting an empirical study of relevant questions posted

to ROS Answers, a ROS-speci�c Q&A site similar to Stack Over�ow.

Secondly, we determine the extent to which state-of-the-art analysis

tools help to address those miscon�gurations by conducting a liter-

ature review of analysis papers published at several major software

engineering, architecture, testing, and robotics conferences. Finally,

as part of our analysis, we highlight miscon�gurations unaddressed

by existing techniques and further discuss research opportunities

in developing new techniques for them.

Through our study, we make the following contributions:

• A taxonomy of miscon�gurations in ROS, based on a quali-

tative study of a popular Q&A platform (Section 3);

• A literature review of the state-of-the-art approaches and

how they cover the miscon�gurations (Section 4);

• A dataset of miscon�gurations and questions manually ana-

lyzed and categorized that can be used to guide future stud-

ies and develop novel techniques (https://zenodo.org/doi/10.

5281/zenodo.12642380).

2 Background

In this section, we provide a high-level introduction to ROS as a

middleware for building component-based robotics software and

as an open-source ecosystem of reusable components.

Systems in ROS are built as a collection of independent pro-

cesses, known as nodes or components, each responsible for pro-

viding certain functions (e.g., perception, planning, control, dri-

ver interfacing). At its core, ROS’s responsibility is to provide

the “plumbing” that facilitates communication between distributed

components. The bulk of communication within ROS follows an

anonymous publish/subscribe pattern [46]. At one end, compo-

nents (e.g., a camera driver) publish messages to named topics (e.g.,

/camera/color/image_raw). On the other hand, components (e.g.,

object detection) subscribe to those same topics to receive mes-

sages. Neither the publishers nor the subscribers are directly aware

of one another’s identities (i.e., they are spatially decoupled [16]).

Moreover, communications are de�ned at run-time via calls to the

ROS API (e.g., strings are used to state topics by name).

One of ROS’s biggest strengths is its rich ecosystem of generic

open-source components that can be reused for common robot func-

tions [32, 38]. For example, MoveIt! [9] provides motion planning

and execution for manipulation, ros_control [8] provides im-

plementations of low-level controllers (e.g., velocity, joints, e�ort),

and ros_localization [40] provides �lters for state estima-

tion (e.g., by fusing GPS and IMU data). By reusing o�-the-shelf

components, developers can, in theory, reduce the cost and com-

plexity of building robot software. However, as these components

are generic, they must be con�gured to work in speci�c contexts.

ROS uses con�guration �les to customize and arrange those

components into a functioning ensemble. These include Launch

XML (or Python) �les, which launch and compose each compo-

nent within the system, and ROS Parameter YAML �les, which

are used by components at run-time to customize their behavior

(e.g., specifying a color format and topic name for camera images).

General-purpose components use these con�guration �les to tailor

their behavior to a particular robot, application, or environment.

Particularly complex and variable components and subsystems (e.g.,

Nav2, MoveIt!, ros_control) go beyond providing a �xed set of pa-

rameters and embed a limited domain-speci�c language within the

ROS parameter system.

Together, these aspects of ROS enable rapid prototyping, encour-

age component reuse (e.g., exchange components without modify-

ing the rest of the system), and reduce the cost and complexity of

building robots. However, due to ROS’s dynamic, spatially decou-

pled architecture, developers must follow assumptions and conven-

tions when integrating components into their system, which are

neither enforced nor documented [1, 15]. Failing to do so leads to

miscon�gurations. Often, miscon�gurations do not produce mean-

ingful errors and are uncovered viamanual and laborious debugging

of erroneous behaviors at run time.

3 Study of Miscon�gurations

To understand which miscon�gurations current tools can address,

we �rst need to know the di�erent types that exist. Therefore, we

ask the following research question:

RQ1:What kinds ofmiscon�gurations do developersmake

when building robot software systems with ROS?

To answer this question, we perform an empirical study of ROS

Answers, the, until recently, primary Q&A forum for ROS [15].4

Q&A platforms are designed for users to post their problems, in-

cluding explaining the scenario where the problem occurs. While

only some of the questions pertain to miscon�guration, we found

many such instances in a prospective search. Q&A websites pro-

vide more detailed miscon�guration examples than social coding

4In August 2023, Open Robotics decided to move to the Robotics Stack Exchange
(robotics.stackexchange.com).

1162

https://zenodo.org/doi/10.5281/zenodo.12642380
https://zenodo.org/doi/10.5281/zenodo.12642380
https://robotics.stackexchange.com

Understanding Misconfigurations in ROS: An Empirical Study and Current Approaches ISSTA ’24, September 16–20, 2024, Vienna, Austria

ROS Answers
Snapshot

Accepted Answers Filter

ROS and Architecture Concepts Filter

CODE

Category

Category

Category

Description

Compilation and Build Errors Filter
Description

Description

CODE

CODE

Check
Relevancy

Validation
& Coding

Data Collection & Filtering Open Coding

A1

A2
A3

A4

67 1789

27 547

13 740

228

relevantnot relevant

2 614

+

Manual Filtering

10 898

not analyzed

analyzed

Figure 1: Three-step methodology for analyzing ROS Answers questions. Step 1 collects a snapshot of 67 189 questions. Step

2 selects questions with accepted answers containing ROS or software architecture concepts and �lters questions about

compilation or building issues. Step 3 produces a sample of 228 questions �ltered based on their relevance. Questions are

divided into stages, where their codings are iteratively improved.

platforms (e.g., GitHub) since commit messages often lack impor-

tant context, making it di�cult or impossible to reliably identify

miscon�gurations. Furthermore, issue trackers often describe bugs

in individual components rather than the di�culties of integrating

those components into a working system. To that end, we perform

a thematic analysis of questions posted to ROS Answers.

In the rest of this section, we describe our methodology (Sec-

tion 3.1) and its associated threats to validity (Section 3.2) before

presenting our taxonomy of ROS miscon�gurations (Section 3.3).

3.1 Methodology

Figure 1 outlines our high-level methodology, which takes inspi-

ration from studies of similar Q&A platforms [2, 49]. Below, we

describe each step of our methodology.

Data Collection & Filtering. We �rst gathered all 67 189 ques-

tions posted to ROSAnswers between January 1st, 2011, and Novem-

ber 20th, 2022. Figure 2 presents an example of a question (231458)

and its accepted answer. We then �ltered these questions to a set of

27 547 by selecting only those with an accepted answer as they o�er

an alternative perspective and accepted solution from the user.

During the second step, we narrowed the accepted questions

to those referring to ROS and architectural concepts, expecting to

obtain miscon�guration questions. Reducing the set of questions

is a common practice in the literature [2, 4, 49]. We used com-

mon ROS concepts as de�ned in the ROS Wiki: node, subscribe

topic, message, parameter, service, action, launch, publish, and sub-

scribe. Since developers indirectly de�ne their system’s architecture

when changing con�gurations, we also identify questions related to

software architecture errors [21]: architecture, mismatch, assump-

tion, incompatibility, inconsistency, integration, and con�guration.

Subsequently, the set was further re�ned by removing questions

containing keywords related to installation and build errors (e.g.,

build error or compil*). Build errors are comparatively easy

to determine and diagnose, as developers can examine the error

messages generated. This work focuses on undetected miscon�g-

urations during the deployment process, subsequently impacting

robots behaviors. These errors are signi�cantly more challenging

to detect and trace back to their source. This �nal �ltering step pro-

vided a total of 13 740 accepted questions considered for sampling.

Manual Filtering. The �rst author (A1) randomly selected ques-

tions from the 13 740 questions and labeled them as relevant or

asked Apr 8 '16
archit

3 ●1 ●2 ●3

updated Apr 8 '16

RGBDSLAM rgbdslam_v2 rgbdslamv2 realsense realsense_camera

0
rgbdslam_v2 not receiving any video stream from Realsense
R200

I'm trying to use a Realsense R200 camera to generate 3-D maps. For this purpose,

I have the realsense_r200_nodelet running on $ROS_MASTER_URI like so

roslaunch realsense_camera realsense_r200_nodelet_standalone_manual.launch color_fps:=30

color_height:=480 color_width:=640 depth_fps:=30 depth_height:=480 depth_width:=640

I have rgbdslam running on a separate machine. I run it like so

roslaunch rgbdslam rgbdslam.launch

Unfortunately, I don't see any video being captured on the GUI that comes up. I have updated the

rgbdslam.launch file to have the right values for the config parameters. The relevant ones are as shown below

<param name="config/topic_image_mono" value="/camera/color/image_raw"/>

<param name="config/topic_image_depth" value="/camera/depth/image_raw"/>

<param name="config/topic_points" value="/camera/depth/points"/>

<param name="config/base_frame_name" value="/camera_link"/>

<param name="config/camera_info_topic" value="/camera/color/camera_info"/>

I have confirmed using rviz that my machine does receive video stream from the Realsense camera. Does

anyone have any pointers on what I might be doing wrong to not receive anything on the rgbdslam GUI.

1

2

answered Apr 10 '16
al-dev

873 ●7 ●14 ●20

linkadd a comment

0

Set config/topic_points to "" . As specified in the launch file : "if empty,

poincloud will be reconstructed from image and depth"

3

Figure 2: Example of a ROS Answers question corresponding

to a miscon�guration where the developer incorrectly de-

�ned a parameter value. Each question contains a title (1),

content with text and source code (2), and metadata about

the author, date, and number of votes. Questionsmay include

comments, answers, and an accepted answer (3).

irrelevant by analyzing their content to determine if it described

a failed attempt to con�gure the system (i.e., interacting with the

con�gurations or source code �les).

Open Coding. The �rst author (A1) iteratively provided sets

of relevant questions to three other authors (A2, A3, A4) who ap-

plied an open coding [17] approach to construct a taxonomy of

miscon�gurations. At each step, the authors individually proposed

an updated set of codes for their sub-set of questions before dis-

cussing those codes and merging them into a revised taxonomy.

The subsets were constructed such that each question was analyzed

by three di�erent authors, allowing a diversity of perspectives to be

1163

https://answers.ros.org/question/231458
http://wiki.ros.org/ROS/Concepts

ISSTA ’24, September 16–20, 2024, Vienna, Austria Paulo Canelas, Bradley Schmerl, Alcides Fonseca, and Christopher S. Timperley

TF
39

Taxonomy of Misconfigurations

Embedded DSL
MoveIt
Navigation Stack
ROS Control
Robot Localization
URDF

Incorrect
Missing

Nodes

Contextual
Application-Environment
Simulation vs Real
Hardware
 Actuators
 Compute
 Mechanical
 Sensors

Messages
14

Names
49

Timeliness
21

Calibration
Camera
PID
Odometry

Parameters
Dead-Write
Defaults
Dependency
Incorrect
Missing

Semantic Types
Color Format
Constraints
Physical Units
Transformations

Launch
Arguments
Duplication
Environment Variable
Includes
Race Condition

Mismatches
Namespaces
Remapping

Conflicting Publishers
Format
Filters
No Publisher
Periodic

Queues
Frequency
Stale Data
Synchronization

Duplication
Incorrect-Transform
Missing-Transform

84
19

58

18

20

11

66

27

Other
Documentation
Simulation
BUG:Component
BUG:Infrastructure

Figure 3: Mindmap of the miscon�gurations identi�ed from the study presenting the 12 high-level categories of miscon�gura-

tions, and their 50 sub-categories level. Each miscon�guration contains the number of questions annotated with the code. Each

question may refer to more than one miscon�guration.

captured and reducing the author bias. This process continued until

reaching the saturation point [22] (i.e., no further changes were

made to the taxonomy after reaching the end of a step) after ana-

lyzing 228 questions, resulting in a �nal taxonomy of 12 categories

and 50 subcategories of ROS miscon�guration.

Labeling. Finally, we labeled each of the 228 questions using

the �nal taxonomy. Half of the questions were labeled by one pair

of authors (A1, A2) and the other half by a di�erent pair (A3, A4).

We calculated the agreement by dividing the number of codes both

authors agreed on by the total number of codes used. This �rst

step led to an agreement of 84.12% and 85.5% for each pair of au-

thors. Then, each pair compared the codes that di�ered by one code

and adjusted their code if in agreement. Furthermore, to determine

documentation-related questions, the authors collected all ques-

tions annotated with documentation, discussed random instances

of these, and re-annotated all questions until they reached an agree-

ment on using this code. Finally, the authors discussed 26 questions

with initial disagreements. The authors who did not analyze a given

question were arbiters during the discussion.

3.2 Threats to Validity

External Validity.We identify two primary external validity threats:

the generality of our results to (a) di�erent ROS versions and dis-

tributions and (b) expert users. The �rst threat relates to the possi-

ble predominance of ROS 1 over ROS 2 questions and the impact

of ROS distributions. Given the relatively recent release of ROS

2 [37] in 2018, we expected more questions related to ROS 1. We

found that the analyzed questions rarely speci�ed ROS or distri-

bution versions (37 out of 228), making it infeasible to determine

version-speci�c miscon�gurations. Furthermore, as there are few

architectural di�erences between ROS versions, we believe that our

�ndings generalize to both versions. The second threat concerns

the applicability of our �ndings to real-world scenarios. By sam-

pling data from a popular ROS Q&A platform, we are addressing

real-world developer issues. Nevertheless, we recognize that indus-

trial settings may present unique, undisclosed miscon�gurations.

Our taxonomy provides a basis for further studies in such contexts.

Internal Validity. We identify four main threats to internal

validity: the initial samping method, the generalizability of the

sampled data, biases in question analysis, and potential misrepre-

sentation of miscon�guration types in the sampled ROS Answers

questions. The �rst threat regards the initial sampling and valida-

tion step with only one author, possibly introducing personal biases

in the selection. To mitigate this step, we performed a preliminary

study similar to the current one, in which all authors looked at a

sample of questions and validated them as relevant or not relevant.

To address the second threat, we sampled relevant ROS Answers

questions, inspected, validated, and categorized them until reaching

theoretical saturation, preventing the introduction of unaddressed

categories with new questions. For the third threat, we iteratively

analyzed questions and validated their relevance and miscon�gura-

tion categories with at least two authors. The forth threat concerns

the sample’s representativeness. We focus on questions related to

ROS concepts and software architecture, which are more likely to

contain miscon�gurations. While other miscon�gurations may be

overlooked, this does not invalidate the identi�ed categories.

3.3 Results

In this section, we describe each high-level category and sub-category

of Miscon�guration in detail, alongwith relevant examples. Figure 3

depicts the mindmap of the taxonomy of miscon�gurations.

1164

Understanding Misconfigurations in ROS: An Empirical Study and Current Approaches ISSTA ’24, September 16–20, 2024, Vienna, Austria

subscriberpublisher /cmd_vel
jack_velocity_controller

/data

Node Topic
Publish
port

Subscribe
port

Legend

imu
/imu_data

Not Subscribed
port

Figure 4: Example of a Name Mismatch from ROS Answers,

where the developer mistyped the subscriber’s topic name.

The subscriber expects data from imu/data, but due to the

wrong connection to imu_data, no data is received.

Messages. Most ROS communication occurs via messages ex-

changed between components over named topics. Through our

analysis, we identi�ed �ve miscon�gurations related to messaging.

Format miscon�gurations arise due to a mismatch between two

or more components in the message format that are exchanged

on a shared topic. For instance, the initialpose topic, representing

the initial position and orientation of the robot in the map, accepts

geometry_msgs/Pose messages. Both publishers and subscribers

must respect the message format when exchanging messages on

this topic. However, a miscon�guration occurs when either end

breaks the “contract” and expects a di�erent type of message.

Components may expect a speci�c number of publishers to

the topics to which they subscribe. This assumption eases com-

ponents’ expectations of the frequency of messages they receive.

No Publisher miscon�gurations occurwhen a component subscribes

to a topic no publisher sends messages to. The subscriber waits

inde�nitely for messages that never arrive. Figure 4 presents an

example where the subscriber never receives messages due to a

topic name mismatch. Con�icting Publishers miscon�gurations ap-

pear when there is more than one simultaneous publisher to a topic

that should only be accessed by a single publisher. This leads to

messages that may provide opposite, con�icting instructions.

The message_�lters API is used to �lter incoming messages on a

given topic (i.e., messages satisfying a given condition trigger a call-

back) and synchronize messages across multiple topics (e.g., invoke

a callback once data is received frommultiple sensors). In particular,

we noticed di�culties in using this API (Filters) to synchronize two

topics without losing messages. Finally, Periodic miscon�gurations

occur when the correct system execution relies on messages being

periodically published at a speci�c frequency (e.g., camera, lidar,

IMU data). Miscon�gurations occur when a component stops pub-

lishing data continuously and other parts of the system continue

to wait, inde�nitely, to receive that data. For instance, a pedes-

trian detection node must consistently publish images regarding

pedestrian’s position estimates to function correctly.

Launch. Launch �les are the primary means of orchestration

within ROS, used to launch and glue together individual compo-

nents with speci�c con�gurations into the system.

Developers often use the ability to import other launch �les

recursively to improve modularity and simplify reuse by writing

individual launch �les for separate sub-systems (i.e., a collection of

components that work together to perform tasks such as percep-

tion, planning, or control). When writing a launch �le for an entire

system, developers introduce a layer of abstraction, requiring them

to only reason about what launch �les to include rather than wor-

rying about con�guring every individual node and subsystem. We

observed cases where the developer either Includes inappropriate

launch �les for the given context or fails to include crucial launch

�les necessary for the robotic system’s functioning.

We also observe node Duplication errors in launch �les, where

two or more nodes are instantiated with the same name (e.g., by

accidentally launching the same node with the same name). In this

case, ROS complains at run-time that the name is taken, and the

second node crashes upon launch.

Since ROS architectures are de�ned at run-time, launch �les are

susceptible to Race Conditions . For instance, nodes may publish

messages to topics before the subscriber �nishes launching, causing

thosemessages to be lost. Nodes can also be sensitive to the ordering

of <node> and <param> tags within launch �les: In ROS 1, a

<node>may launch before the parameters are stored on the global

parameter server, leading to parameter miscon�gurations.

To allow components to be customized to a particular system,

launch �les support Arguments , whose values may be provided by

the command line, a parent launch �le, or a speci�ed default value.

Those can be accessed via string interpolation (e.g., via $(arg

name-of-arg)) within the launch �le or through the command

line, and are typically used to specify ROS parameter values, rename

nodes, control the inclusion of particular nodes, or set the system

time. Arguments are prone tomany of the same issues as parameters

(e.g., dead writes and unintentional use of default values).

Environment variables are also used to customize the behavior

of individual components in launch �les. Miscon�gurations can

occur when necessary environmental variables for nodes are not

speci�ed or when incorrect values are assigned to those variables.

Parameters. In ROS, parameters are used to adjust the behavior

of components to their intended deployment. Parameter values are

typically provided by launch �les, which are used to compose mul-

tiple components into a functioning ensemble. Listing 1 presents

an example of a launch �le with two parameter-related miscon�gu-

rations where the developer forgets to include a tf_prefix. This

parameter is critical when working with multi-robot systems, to

create separate transform trees for each robot. Since the parameter

is not de�ned, the system, by omission, uses the default value, and

a single transform tree is used for all the robot systems.

Since parameters are de�ned and used at run-time within ROS,

components may unexpectedly crash when a required parameter is

Missing , or behave in an unintended manner when the component

falls back on a Default value for a missing parameter. Both of

these types of parameter miscon�guration can also be caused by

Dead Writes where the wrong name is used to specify a parameter

(e.g., due to a typographical error or a name change refactoring).

These cases can be hard to debug as there is no static checking

and warnings may not be produced for missing or unused (i.e.,

dead-write) values.

Miscon�gurations can occur when using Incorrect parameter

values. Those values may be universally incorrect (e.g., out of

1165

ISSTA ’24, September 16–20, 2024, Vienna, Austria Paulo Canelas, Bradley Schmerl, Alcides Fonseca, and Christopher S. Timperley

1 <!-- robot urdf model -->

2 <param name="robot_description" command="cat $(find

urdf_pkg)/urdf/my_robot.urdf" />

3

4 <!-- robot state publisher node -->

5 <node pkg="robot_state_publisher"

6 type="state_publisher"

7 name="robot_state_publisher">

8

9 <param name="~tf_prefix"

10 value="robot_name"

11 type="str" />

12 </node>

Listing 1: Example where tf_prefix parameter required

for operating with multiple robots is Missing, leading the

system to use the Default Parameter value.

bounds) or contextually incorrect for the given robot, environ-

ment, and application. When de�ning parameter values, developers

also need to be cautious of potential Dependency issues, where the

behavior of a given parameter is changed by the value of another

parameter (e.g., a parameter that enables or disables a feature).

Semantic Types. Even when components correctly make as-

sumptions about the message format shared on a given topic, they

can still make incorrect assumptions about the message content (i.e.,

their semantic types). For instance, two components may correctly

exchange a sensor_msgs/Image, but the publisher sends color

images while the subscriber expects grayscale images.

Components implicitly assume that messages satisfy speci�c

Constraints over their contents. For example, values are within

certain bounds (e.g., positions, velocities, motor values), speci�c co-

ordinate frames are used, or the range of laser scan measurements

is respected. Type-related miscon�gurations may stem from the im-

proper use of images and point clouds, such as mismatched assump-

tions between components about the Color Format of the image or

point cloud (e.g., grayscale vs. color images) or an incorrect assump-

tion that all of the images and point clouds that are shared on a given

topic have been subject to speci�c Pointcloud Transformations (e.g.,

resizing, compression, or color conversion) or Image Transformations .

Finally, miscon�gurations can occur due to mismatched assump-

tions on the Physical Units of data that are exchanged between

components. As robots interact with the real world, ensuring that

the component’s physical units match is critical. For instance, a

publisher describes rotational velocity using radians per second,

but the subscriber expects the same quantity in degrees per second.

Names. Every node, topic, service, action server, and parameter

within ROS has an associated name speci�ed at run-time either as

a �eld or property within a Launch XML �le or as a string in the

source code of a component.5 Since names are resolved at run-time,

it is easy to introduce Mismatches between two or more compo-

nents in the name of a resource (e.g., topic, parameter, service, or

embedded DSL con�gurations). Figure 4 illustrates an example of

one of these errors from our dataset, where the developer incor-

rectly de�ned the topic’s name in the subscriber. Since the name

is incorrectly con�gured, the subscriber receives no messages as

5http://wiki.ros.org/Names

there are no publishers for that topic. Detecting this miscon�gu-

ration is challenging, as the topic names only di�er by a speci�c

character and are usually only detected during execution when the

system does not behave as intended. Another instance of a name

mismatch relates to typos when writing the con�gurations for the

robot localization. For instance, the developer incorrectly de�nes

the name of the world_map, a parameter specifying the frame

treated as a �xed reference frame.

ROS implements a hierarchical naming structure to promote

encapsulation. By convention, this system groups related resources

and allows multiple instances of the same node to be used simulta-

neously (e.g., one node for each camera). ROS’s hierarchical nam-

ing structure is implemented via namespaces: Every resource be-

longs to a namespace, denoted by a forward slash in the name

of that resource (e.g.,/right_camera/raw_image belongs to

/right_camera). Furthermore, namespaces may be stacked (e.g.,

/vehicle_a/right_camera/raw_image) where / denotes

the root of the hierarchy, known as the global namespace. We ob-

serve that Namespaces miscon�gurations occur most commonly

when developers forget to use namespaces or otherwise use the

wrong namespace, leading to naming collisions and causing the

system to have an unintended architecture.

In addition to namespaces, ROS also relies on name Remapping

to help encapsulation and reuse: ROS launch �les allow the map-

ping of the name of a certain resource (e.g., topic, service) onto

a di�erent name within the context of a particular component.

This ability is used to wire a general-purpose component into the

necessary con�guration for a speci�c system. For instance, when us-

ing the image_proc/resize component6 to resize camera im-

ages, users must remap the subscribed image topic (i.e., incoming

camera images) and published ∼image topic (i.e., resized image)

onto appropriate source and destination topics (e.g., /right_-

camera/image_color and the topic target named /right_-

camera/image_color_resized). Incorrect ormissing remap-

pings can lead to message loss and unintended behavior.

Nodes. Nodes (i.e., components) are the processes within ROS

that collectively form a working robot by performing computation,

exchanging information, and interacting with the robot hardware.

In our study, we observe cases where either crucial components

are Missing or an Incorrect component is used for the particular

robot, environment, or intended application. For example, the devel-

oper incorrectly uses a planner, which leads the robot to navigate

erroneously, possibly against walls. A special case for missing a

component is a missing nodelet manager. In this case, developers

do not de�ne the quali�ed manager name, allowing all nodelets to

be assigned to that manager.

Timeliness. Robots are real-time systems: messages must be

sent between components (e.g., control signals, state estimates) by

a certain deadline to prevent unintended and dangerous behavior.

Timeliness miscon�gurations occur when the timing assumptions

of interacting components are mismatched.

Both publishers and subscribers within ROS 1 have associated

Queues , which are used to bu�er either outgoing or incoming

messages. Determining an appropriate size for this queue is crucial

to ensure both timely and correct behavior: A queue size that is

6http://wiki.ros.org/image_proc

1166

Understanding Misconfigurations in ROS: An Empirical Study and Current Approaches ISSTA ’24, September 16–20, 2024, Vienna, Austria

...

...

stereo_viewstereo_image_proc

Prosilica
Instance 1

Prosilica
Instance 2

Queue
Size: 5

/stereo/disparity
2 Hz

2 Hz

/stereo/right/image_rect

/stereo/left/image_rect
Queue

Size: 5

Queue
Size: 5

Node Topic Publish
port

Subscribe
port

Legend

Figure 5: Example of a miscon�guration where the developer

gets images from stereo_image_proc at 2Hz, converting them

to disparity images. The stereo_view needs matching left,

right, and disparity images, but the slow processing speed of

disparity images causes left and right images to arrive faster

and �ll the queue, dropping messages. The stereo_view skips

these until a matching of images is available.

too small can lead to message loss, whereas an overly long queue

can lead to excessive compute resource usage and message delays.

For instance, Figure 5 presents a queue miscon�guration within

a robot with stereo vision. The stereo_view node requires three

images: left, right, and the disparity image (i.e., the di�erence be-

tween left and right). In the proposed architecture,7 the disparity

image is computed using the other images. However, computing

the disparity image takes time and computational resources. Due

to the desynchronization of the sensors, when the disparity image

is ready, the original left and right images have already been over-

written in their corresponding queues. To �x this miscon�guration,

the developer can increase the queue size to avoid overwriting or

throttle the publishing rate of the cameras to account for time taken

to produce the disparity image.

This example is an instance of Frequency miscon�guration be-

tween publishers and subscribers, where subscribers expect to re-

ceive messages at a given frequency to operate correctly.

To function safely, certain components rely on an uninterrupted

stream of data that accurately describes the state of the robot and

its environment. For example, motion planning in a dynamic envi-

ronment requires timely and accurate estimates of the position of

both the robot and potential obstacles in the scene. Unintended and

unsafe behavior can occur when Stale Data no longer accurately

represent the current state of the robot and its environment, as

messages are not published at a high enough frequency.

Finally, Synchronization of certain messages is essential for cor-

rect system operation. For instance, in example to showing the

queue miscon�guration, Figure 5 presents an example where the

sensors used are sources of multiple miscon�gurations. One source

of miscon�guration is the lack of synchronization between camera

frequencies. There is a mismatch when the stereo_view processor

receives the information from each camera. Synchronization of

the receiving data is required to ensure that all images are con-

sumed simultaneously, keeping the original images available before

consuming the corresponding disparity image.

7https://answers.ros.org/question/9108

TF. Robot systems typically rely on a large number of 3D coor-

dinate frames to reason about the relative position and orientation

of the robot, its physical parts, and its environment. tf8 is a core

ROS library that uses a special tree structure to allow users to trans-

form between coordinate frames (e.g., to determine the position

and orientation of the robot’s gripper relative to the robot’s base).

We observe three major types of TF-related miscon�gurations:

Incorrect Transform , either due to a typo, a misunderstanding of

the transform tree semantics, or a mistake about the geometry

of the robot. Missing Transform , where the developer forgets to

provide a transformation between a parent and child frame. Finally,

Duplication of transforms, where the developer publishes the same

TF transform from multiple con�icting sources. (i.e., there should

be a single source of truth).

Embedded DSL. ROS, its associated toolchain, and some of its

most popular (and general purpose) packages rely on their own

custom con�guration formats. Some ROS packages embed their

con�guration formats inside of ROS’s parameter system, e�ectively

forming an embedded DSL. In other cases, a standalone �le is used

(e.g., URDF).We observed issues related to the use and con�guration

of the Navigation Stack, ros_control, robot_localization, MoveIt!,

and URDF. These miscon�gurations contain more speci�c types

of issues (e.g., parameter issues). This high-level category presents

the types of con�guration �les related to these miscon�gurations.

Navigation Stack provides mobile robots with the ability to use

odometry and sensor values to localize their position and navigate

within a 2D plane by sending velocity commands to the mobile

base.9 Speci�cally, we saw issues concerning the correct de�nition

of motion planning parameters. For instance, developers may select

an inappropriate planner or fail to adapt the parameters of that

planner to the robot and environment.

URDF (Universal Robot Description Format) �les describe robots

in terms of their links, joints, transmissions, sensing capabilities,

collision geometry, and physical properties (e.g., inertia, contact

coe�cients, joint dynamics).10 URDF �les are used for visualization,

simulation, and motion planning. For instance, when developers

forget to specify the joints between two links or incorrectly provide

the robot description of two systems in the same �le.

MoveIt is a platform for building manipulators using ROS that

incorporates algorithms for motion planning, manipulation, kine-

matics, control, and navigation [9]. Successfully con�guring it for a

robot in a particular environment relies on careful con�guration of

numerous parameters (e.g., planner density, and padding o�sets).

ROS Control allows developers to integrate and compose mul-

tiple o�-the-shelf control algorithms into their system. To behave

safely and operate as intended, each controller needs to be adapted

to the speci�cs of each robot, which, when done incorrectly, can

result in a miscon�guration.

Finally, Robot Localization provides a node collection for per-

forming state estimation (i.e., Kalman �lters) and integrating GPS

data: they fuse data from multiple sensor sources (e.g., IMUs, GPSs,

odometry) to obtain a robust estimate of the robot’s state (i.e., posi-

tion, rotation, velocity). We observe issues that stem from missing

8http://wiki.ros.org/tf
9https://wiki.ros.org/navigation
10https://wiki.ros.org/urdf

1167

ISSTA ’24, September 16–20, 2024, Vienna, Austria Paulo Canelas, Bradley Schmerl, Alcides Fonseca, and Christopher S. Timperley

or incorrect transforms, incorrect units, and sensor mismatches

(e.g., attempting sensor fusion without wheel or visual odometry).

Calibration. Robots rely on a suite of sensors to perceive their

environment. To ensure that the robot’s understanding of its envi-

ronment is and remains accurate, those sensors must be calibrated.

In our study, we observed miscon�gurations due to the miscali-

bration of Cameras , Odometry , and PID controller parameters,

all of which required a manual change. In all of these cases, the

mistake was either (a) forgetting to calibrate entirely (e.g., camera

intrinsics and extrinsics), (b) relying on default parameters that

were inappropriate for the robot (e.g., PID defaults), or (c) using

incorrect values (e.g., wheel radius).

Contextual. Miscon�gurations can also occur when the sys-

tem’s con�guration is tweaked according to a speci�c context.

A simple example is developing the robot’s software within a

simulation context and deploying it to a physical robot or vice

versa. Some con�gurations and parameters need to be di�erent

when changing contexts, leading to Simulation vs. Real miscon�g-

urations when the behavior does not match (typically by not ad-

justing the necessary con�gurations). Furthermore, we encoun-

tered Application-Environment miscon�gurations where the com-

ponent’s con�guration depends on the type of application of the

system and the surrounding environment. For instance, the con�g-

urations of the components inside and outside a warehouse can be

di�erent due to weather, lighting conditions, and surface grip.

The robot’s physical con�guration (i.e., its sensors, actuators,

mechanical components) naturally imposes restrictions over the

set of plausibly correct software con�gurations; con�guring the

robot’s software therefore requires an understanding of the robot’s

physical con�guration. We identi�ed four sub-categories where

Hardware components require careful software con�guration: (1)

Actuators , where the con�guration of the parameters for a com-

ponent in the system depends upon the exact actuators that are

used, (2) Sensors , where the type of sensors and their positioning

on the system restricts parameter con�guration, (3) Mechanical ,

where the robot’s mechanical hardware imposes restrictions of the

space of meaningful and safe parameters, and (4) Compute where

the con�guration impacts resource usage. Furthermore, robots may

have speci�c hardware limitations that must be addressed via soft-

ware con�guration. For instance, one source of miscon�guration

in Figure 5 is resource-related, where components take longer to

process overly large camera images.

Other Challenges. During the analysis, we encountered ques-

tions not related to miscon�gurations. Documentation questions

occur due to missing or outdated documentation in ROS. This cate-

gory is not considered a miscon�guration as the developer could

not progress with the con�guration and reach a miscon�guration

due to the lack of documentation. We highlight this category as

part of our taxonomy since outdated or lack of documentation may

cause developers to introduce miscon�gurations. Developers may

not know what components to use or how to use them correctly

in their systems. We also encountered instances where the issues

were related to the component having a BUG:Component rather

than being a con�guration issue, or the BUG:Infrastructure in which

the system is running contained an error (e.g., RViz). Finally, we

identi�ed cases where the misuse of Simulation prevents the cor-

rect functioning of the system. Developers can use simulation time

to playback previously recorded data (e.g., sensor readings) in a

time-synchronized manner (e.g., during testing and debugging).

However, developers unfamiliar with the concept of simulation

time may forget to de�ne it, resulting in incorrect system behavior

(e.g., di�erent times in the receiving of data).

4 Study of Existing Tools

After categorizing the di�erent types of miscon�gurations in ROS-

based systems, it is essential to identify which categories are over-

looked when using existing state-of-the-art analysis techniques. To

that end, we address the following question:

RQ2: To what extent do current techniques address these

categories of miscon�guration?

Answering this question reveals the gaps in current tooling and

helps guide the development of new tools to increase the coverage

of miscon�gurations that can be detected earlier in the development

process, avoiding errors in deployment. To address this objective,

we conducted a literature review following best practices outlined

by Snyder et al. [47]. Our search strategy, in�uenced by Albonico et

al. [3], focused on sourcing works from the software engineering,

software architecture, software testing, and robotics communities,

which are the likely places for such techniques to have been re-

ported. Figure 6 illustrates our methodology for performing the

literature review, which we describe below.

4.1 Methodology

Our literature review methodology consists of three stages:

Stage 1. Collection: Using DBLP,11 we collected all papers of

journals and conferences and associated co-located events between

2018–2022 inclusive from the major software engineering (ICSE,

FSE, ASE, TSE), software testing (ICST, ISSTA), software architec-

ture (ICSA, ECSA), and robotics (ICRA, IROS, TROB) venues. We

gathered 18 729 paper links, titles, venues, and respective years.

Stage 2. Re�nement & Collection: The �rst author started by

manually inspecting paper titles and searching for keywords that

describe any of the subcategories of miscon�gurations. Further-

more, for non-robotics venues, we searched in the titles for robotics-

related topics. In contrast, in the robotics venues, we searched for

concepts related to veri�cation, testing, and repairing miscon�g-

urations. Whenever a prior work seemed relevant, we manually

inspected it by looking at the abstract, followed by the introduction,

approach, and conclusion.

Then, we annotated the relevant papers with the miscon�gura-

tions they cover and their type of analysis (static or dynamic). We

consider a technique static if it performs veri�cationwithout execut-

ing the system and dynamic otherwise. Although general-purpose

testing techniques potentially cover all the identi�ed miscon�gura-

tions in theory, we only considered those that explicitly cover them

in their problem statement or examples provided in their evaluation.

This re�nement considered 18 relevant papers.

Stage 3. Internal & Authors Validation: We performed a

two-step validation of the matching each technique and the mis-

con�guration. We �rst validated our �ndings internally with the

11https://dblp.org

1168

https://dblp.org

Understanding Misconfigurations in ROS: An Empirical Study and Current Approaches ISSTA ’24, September 16–20, 2024, Vienna, Austria
20

18

20
22

IROS

ASE FSE TSE

ICRA

ICSE

TROB ICSA

A1

Title Refinement
18.729

Misconfigurations
Refinement

296

... ...

Tool1 Misc1

Tool2 Misc2

A2
Internal
Validation

... ...

Tool1 Misc1

Tool2 Misc2,3

Paper
Authors

... ...

Tool1 Misc1

Tool2 Misc2,3

Author
Validation

23

A3
A4 18

†

ECSA ISSTA ICST

Figure 6: Methodology of the literature review. We collected prior work from 2018 to 2022 from top conferences and journals in

software engineering, robotics, architecture, and testing. We re�ned the search by looking at the paper titles, then reading the

papers and matching them to miscon�gurations. We perform an internal validation with three authors and author validation

with the authors of each technique to validate the proposed tool for miscon�guration matching.

other authors of this study (A2, A3, A4), experts in software ar-

chitecture, software engineering, and robotics, to mitigate against

missing or incorrect categorizations. We then asked the authors

of each technique to validate our �ndings externally. Since ROS

Answers questions do not contain executable examples to test each

technique’s ability to detect a particular kind of miscon�guration,

the external author validation helps us validate our assumptions

of each tool’s ability. To perform an external author validation, we

gathered the contact details for the authors of each technique and

emailed them to asking if our classi�cation is correct and what

other miscon�gurations, if any, their technique addresses.12 We

analyzed the answers received by the papers’ authors. When in

disagreement, we compare both mappings and re-analyze the pa-

per. From the proposed miscon�guration mapping, 3 out of the 10

authors of each technique proposed an update by adding only 1

extra category. For all but one of thise addition, we agreed with

the correction and updated our categorization. The sole case where

we disagreed with the authors’ additional categories was Santos et

al. [45], which allows developers to synthesize run-time monitors

and discover bugs by writing properties using the HAROS Property

Language (HPL) [44]. Similar to general-purpose test cases, these

properties act as tests that may detect speci�c instances of miscon-

�guration but do not cover the overall category of miscon�guration.

While this extensibility is essential, as is writing integration tests

in general, we consider this and other similar general-purpose test-

ing techniques outside the scope of this literature review as, with

the appropriate instrumentation and sca�olding (i.e., test inputs),

testing tools can theoretically identify any miscon�guration, even

if it is seldom practical.

4.2 Threats to Validity

External Validity.We identify the generalizability to other venues

and the time frame selected as external threats. This literature re-

view focused on searching for relevant work at top conferences and

journals in software architecture, software engineering, software

testing, and robotics. However, our �ndings may miss relevant tools

12At the time of submission, 10 of the 18 techniques were validated by the authors of
those techniques.

by focusing on speci�c conferences and a particular time frame

(2018–2022). Extending the search for further years and conferences

and journals presents a challenging task as the intersection of mul-

tiple research areas quickly increases the prior work required for

manual inspection.

Internal Validity.We identify the manual inspection of prior

work and the subjectivity in categorization as internal threats. The

initial paper re�nement was done by only one of the authors, and

there is a threat when selecting relevant prior work based on the

paper titles where the author may overlook relevant papers. By

searching for terms related to miscon�gurations and the veri�ca-

tion, testing, and repair of robotic systems, we expect to mitigate

this threat. There is also a threat when performing the mapping

of each technique to a miscon�guration. To mitigate this mapping,

each technique was analyzed by two authors, and we tried to vali-

date the mapping with the original paper authors.

4.3 Results

Table 1 presents the mapping between the techniques and the mis-

con�gurations. We identify the miscon�gurations each technique

addresses, the type of analysis it performs, static or dynamic, and

the venue. We identi�ed techniques that statically or dynamically

detect miscon�gurations, although some tools are static techniques

whose veri�cation is optionally extended with dynamic analysis.

For instance, Burgueno et al. [5] statically analyzes physical units

described by a modeling language and generates model invariants

checked during the execution of the system.

We also identi�ed techniques that do not detect miscon�gu-

rations but rather automatically infer or optimize con�guration

parameters. The inference of the con�gurations helps prevent mis-

con�gurations, as developers do not con�gure the system manually.

For example, Wuest et al. [57] automatically infers geometric and

inertia parameters, and Heiden et al. [24] probabilistically infers

simulation parameters.

For each technique, we describe the miscon�gurations it ad-

dresses with an important caveat. Although a technique addresses

a speci�c miscon�guration, it does not mean it is solved. Some

techniques address particular miscon�gurations for speci�c robotic

systems (e.g., Swarmbug) and contain limitations. For instance,

1169

ISSTA ’24, September 16–20, 2024, Vienna, Austria Paulo Canelas, Bradley Schmerl, Alcides Fonseca, and Christopher S. Timperley

Table 1: Overview of each technique, the type of analysis (Dynamic or Static), and the sub-categories of miscon�gurations each

addresses. The main categories of miscon�gurations are as follows: (Ca) Calibration, (Co) Contextual, (M) Messages, (N) Names,

(O) Other, (P) Parameter, (T) Semantic Types, † Author validated, ∗ Authors Disagreement.

Reference Venue Year Analysis Miscon�gurations

Kate et al. [29]† FSE 2018 S (T) Physical Units

Burgueno et al. [5]† ICSE-RoSE 2018 S/D (T) Physical Units (T) Constraints

Witte et al. [56] ICSE-RoSE 2018 S/D (N) Mismatches (M) No Publisher

Wuest et al. [57] ICRA 2019 D (P)Missing

Cramariuc et al. [10] ICRA 2020 D (Ca) Camera (Co) Sensors

Carvalho et al. [7]† IROS 2020 D (T) Constraints (M) Format (M) No Publisher

Wigand et al. [55] IROS 2020 S (Co) Actuators (Co) Application-Environment (Co) Mechanical

Kate et al. [28] FSE 2021 S (TF) Incorrect Transform (TF)Missing Transform

Jung et al. [27]† FSE 2021 D (P) Incorrect (P) Dependency (P) Defaults (Co) Application-Environment

Kortik et al. [33] ICRA 2021 S/D (M) Format (M) No Publisher (M) Con�icting Publishers

Santos et al. [45]†∗ ICSE-RoSE 2021 S/D (N) Mismatches (M) No Publisher

DeVries et al. [12]† ICSE-SEAMS 2021 S/D (Co) Application-Environment (Co)Mechanical (Co) Sim-vs-Real

Taylor et al. [48]† ASE 2022 S (T) Physical Units (TF) Incorrect Transform (TF) Missing Transform

Kim et al. [31]† FSE 2022 D
(DSL) URDF (P) Incorrect (Co) Sim vs Real

(Co) Sensors (Co) Actuators (BUG) Infrastructure

Das et al. [11] ICRA 2022 D (Co) Sensors (Ca) Camera

Heiden et al. [24]† ICRA 2022 D (O) Simulation

Timperley et al. [51]† ICSA 2022 S
(M) Con�icting Publishers (M) No Publisher (M) Format

(N) Mismatches (N) Remapping (P) Dead Write (P) Incorrect

Han et al. [23] ICSE 2022 D (P) Incorrect (P) Dependency

Phys [29] and SA4U [48] both detect physical unit miscon�gura-

tions. While Phys performs static analysis, allowing it to detect

physical unit errors before execution, SA4U requires execution

information to detect the miscon�gurations.

Overall, we identi�ed 18 related works that address 23 of 50

sub-categories of miscon�gurations. Parameters, Messages, and

Contextual are the miscon�gurations most addressed by current

techniques. On the other hand, no miscon�gurations related to the

Timeliness, Nodes, and Launch categories are currently addressed,

and within the Embedded DSL category, only the URDF dialect is

considered in current techniques.

5 Related Work

In this work, we studied the types of miscon�gurations that devel-

opers face and what techniques can address them. As the presented

miscon�gurations are not speci�c to any ROS version or distribu-

tion, we expect our �ndings to generalize to the many ROS systems.

Prior work studied types of bugs in robotic systems and au-

tonomous vehicles. For instance, 27.25% of the bugs in autonomous

vehicles (AV) software detected are miscon�gurations [19]. In-

stances of the miscon�gurations we encountered were also found

in Unmanned Aerial Vehicles (UAV) [54]. 19.6% of the bugs encoun-

tered in a study of two UAVs, PX4 and Ardupilot, are miscon�g-

urations such as parameter misuse and missing, parameter limits

related to hardware, and inconsistencies related to sensors and

libraries. Our taxonomy of miscon�gurations not only addresses

ROS-speci�c issues but also other types of miscon�gurations related

to the cyber-physical nature of these systems.

Similar to the miscon�guration we encountered, the simulation

to real-world transition is challenging in the services robotics do-

main [20]. Missing dependent components are also described in the

literature [18] and presented in our taxonomy through particular

instances of missing nodes and missing nodelet managers. Physical

unit miscon�gurations within ROS have also been quantitatively

and qualitatively studied through projects on GitHub [6, 41]. Issues

related to URDF �les presented in this study, through the scope

of Xacro XML language, are also a source of miscon�gurations in

prior work [2]. ROSDiscover [51] and ROSInfer [13] identify mis-

con�gurations related to the structural composition and behavioral

interaction between components, covering certain miscon�gura-

tions within our Naming, Parameters and Messages, and Timing

categories. Finally, the ROBUST project [50, 52], a large-scale study

of bugs in ROS, evidenced di�erent types of miscon�gurations

related to missing runtime dependencies (e.g., nodes and con�gu-

ration �les), dangerous defaults (e.g., missing setting a parameter

value), namespaces miscon�gurations, and name mismatches. Un-

like prior work, we focus on how developers miscon�gure their

systems and which techniques are available to address them.

Con�guration errors are not speci�c to robotic systems, and

prior surveys found these in other con�gurable systems [59]. For

instance, some open source storage systems are prone to inconsis-

tency errors of parameter values and value inconsistencies [61],

similar to the incorrect parameter and dependent parameter er-

rors we encountered, respectively. Similarly, Android manifests

are also a source of incorrect attribute names and values [26]. Fi-

nally, con�guration errors in databases arise according to the data

types used and the ranges of accepted values for the con�guration

parameters [58].

1170

Understanding Misconfigurations in ROS: An Empirical Study and Current Approaches ISSTA ’24, September 16–20, 2024, Vienna, Austria

6 Discussion

Miscon�gurations are a critical concern in robotic systems, as these

lead to unintended and potentially dangerous behavior. Our study

and literature review identi�ed a gap in the ability of state-of-the-

art analysis tools to cover the space of ROS miscon�gurations. In

this section, we discuss some of the requirements that future anal-

ysis tools need to satisfy to improve the detection of the di�erent

categories of miscon�gurations.

Miscon�guration analysis must work with ROS’s domain-

speci�c languages and dialects. Building ROS Systems requires

changing con�guration elements distributed in multiple di�er-

ent con�guration formats (e.g., Navigation Stack, MoveIt!, URDF).

Through our study, we observe that these formats are a source

of miscon�guration (Embedded DSL). As manually tracking many

component con�gurations across di�erent �le formats and ensuring

their consistency is challenging, automated techniques must detect

miscon�gurations throughout these �les. Through our literature

review, we observe that only one technique explicitly treats these

DSLs as �rst-class entities as part of its veri�cation [31].

One avenue to address this concern is considering the DSL con-

�gurations in analysis tools. Current analysis tools do not explicitly

consider the semantics of the con�gurations within the di�erent

embedded DSLs. A future direction in improving the detection of

miscon�gurations is to incorporate this knowledge into analysis

tools to enhance their capabilities. Alternatively, these separate con-

�guration formats and �les could be merged into a single analysis,

verifying that con�gurations are correctly integrated across DSLs.

Miscon�guration analysis require information about the

robot’s physical environment, hardware, and intended appli-

cation to reliably detect miscon�gurations. As cyber-physical

systems interact with the real world, correctly de�ning robot con-

�gurations depends on the context in which the system is used. For

instance, in Section 3.3: Contextual , we identi�edmiscon�gurations

arising from the lack of knowledge when changing con�gurations

that depend on the environment, hardware, and type of application.

For instance, the positioning of sensors in the hardware, indoor and

outdoor environments, the frequency, quality, and size of images

provided by the sensors, and the type of robotic system are all fac-

tors found in this work that impact the con�guration of software

components. If analysis tools intend to improve their veri�cation,

they must consider this contextual information. However, the phys-

ical environment and hardware information is often missing, as our

literature review found that only 6 of 18 consider this information

to optimize the con�guration values.

Future work can provide application, physical environment, and

system hardware information to analysis tools to improve their

veri�cation through two possible approaches: domain-speci�c lan-

guages and artifact mining. Domain-speci�c languages have been

successfully applied in other domains to verify system properties

and improve code quality [30, 34]. Introducing a DSL, allows de-

velopers to specify properties regarding the context in which the

system is executed (e.g., whether it is executed indoors or outdoors).

When existing, contextual information can be obtained by analyz-

ing artifacts (e.g., Phys [29], ROSDiscover [51], SA4U [48]), and

inspecting the information these dialects provide.

Static analysis is not su�cient to detect all miscon�gu-

rations. Tools must be able to analyze run-time behavior. As

executing the system is expensive, time-consuming, and possibly

dangerous, it is ideal to detect these miscon�gurations prior to

system execution using static analysis tools. While static analysis

techniques perform great work in reducing the cost of detecting

miscon�gurations, these are still bounded by the limited context

understanding, which is not provided in ROS-based systems, and

have scalability issues, being challenging to analyze large code-

bases [35]. Detecting some miscon�gurations requires complex

runtime behavior information not available to static analysis tools.

For instance, a set of parameter values may need to be corrected

according to the system’s execution (Incorrect Parameters),13 the

incorrect calibration of the system is only detectable when execut-

ing the cameras (Calibration),14 or compute issues may arise when

hardware actively interacts with the real world (Contextual).15

Future analysis tools can improve their detection of miscon�gu-

rations by augmenting the static checking with properties. Runtime

behavior information could be used to generate test cases, mon-

itor runtime con�gurations, or use machine learning techniques

to predict potential miscon�gurations based on contextual infor-

mation and the system’s execution. These di�erent approaches for

analysis are currently used in techniques observed in our literature

review and present a promising research direction. For instance,

HAROS [44] generates monitors to track properties during run-

time, SA4U [48] instruments the source code to obtain runtime

information to help detect physical unit miscon�gurations, and

Swarmbug [27] performs multiple executions of the system while

removing environment con�guration variables to detect con�gura-

tions responsible for the buggy behaviors.

Furthermore, future research can focus on system properties

de�ned using speci�cation languages. Properties in these domain-

speci�c languages can help monitor miscon�gurations that are only

detectable dynamically while interacting with the real world.

7 Concluding Remarks

In this work, we conduct an empirical study to categorize the mis-

con�gurations that occur within ROS and determine the extent to

which existing analysis tools cover those miscon�gurations. We

�nd 50 categories of miscon�guration, of which 27 are found not

to be addressed and 23 are partially addressed by existing tools.

Through this study, we identify promising areas for future research,

outline requirements for future analysis tools, and, through our

taxonomy, identify where detailed datasets are needed to develop

tools to detect speci�c categories of miscon�guration.

Acknowledgments

This work was supported by Fundação para a Ciência e Tecnologia

(FCT) in the LASIGE Research Unit under the ref. (UIDB/00408/2020,

UIDP/00408/2020 and EXPL/CCI-COM/1306/2021), the CMU Por-

tugal Dual PhD program (SFRH/BD/151469/2021), and NSF-USDA-

NIFA #2021-67021-33451. The authors would like to thank Bogdan

Vasilescu and the Squareslab group for their feedback on this work.

13https://answers.ros.org/question/30235/
14https://answers.ros.org/question/10975/
15https://answers.ros.org/question/195186/

1171

https://answers.ros.org/question/30235/
https://answers.ros.org/question/10975/
https://answers.ros.org/question/195186/

ISSTA ’24, September 16–20, 2024, Vienna, Austria Paulo Canelas, Bradley Schmerl, Alcides Fonseca, and Christopher S. Timperley

References
[1] Afsoon Afzal, Claire Le Goues, Michael Hilton, and Christopher Steven Tim-

perley. 2020. A Study on Challenges of Testing Robotic Systems. In Inter-
national Conference on Software Testing, Validation and Veri�cation. 96–107.
https://doi.org/10.1109/ICST46399.2020.00020

[2] Nicholas Albergo, Vivek Rathi, and John-Paul Ore. 2022. Understanding Xacro
Misunderstandings. In International Conference on Robotics and Automation. 6247–
6252. https://doi.org/10.1109/ICRA46639.2022.9812349

[3] Michel Albonico, Milica Dordevic, Engel Hamer, and Ivano Malavolta. 2023.
Software engineering research on the Robot Operating System: A systematic
mapping study. Journal of Systems and Software 197 (2023), 111574. https:
//doi.org/10.1016/J.JSS.2022.111574

[4] Michel Albonico, Ivano Malavolta, Gustavo Pinto, Emitza Guzman, Katerina
Chinnappan, and Patricia Lago. 2021. Mining energy-related practices in robotics
software. In International Conference on Mining Software Repositories. 483–494.
https://doi.org/10.1109/MSR52588.2021.00060

[5] Loli Burgueño, Tanja Mayerhofer, Manuel Wimmer, and Antonio Vallecillo. 2018.
Using physical quantities in robot software models. In International Workshop on
Robotics Software Engineering. 23–28. https://doi.org/10.1145/3196558.3196562

[6] Paulo Canelas, Trenton Tabor, John-Paul Ore, Alcides Fonseca, Claire Le Goues,
and Christopher Steven Timperley. 2024. Is it a Bug? Understanding Physical
Unit Mismatches in Robot Software. In International Conference on Robotics and
Automation. 1–7. https://doi.org/10.1109/ICRA57147.2024.10611413

[7] Renato Carvalho, Alcino Cunha, Nuno Macedo, and André Santos. 2020. Veri-
�cation of system-wide safety properties of ROS applications. In International
Conference on Intelligent Robots and Systems. 7249–7254. https://doi.org/10.1109/
IROS45743.2020.9341085

[8] Sachin Chitta, Eitan Marder-Eppstein, Wim Meeussen, Vijay Pradeep, Adolfo Ro-
dríguez Tsouroukdissian, Jonathan Bohren, David Coleman, Bence Magyar, Gen-
naro Raiola, Mathias Lüdtke, and Enrique Fernández Perdomo. 2017. ros_control:
A generic and simple control framework for ROS. The Journal of Open Source
Software 2 (2017), 456. https://doi.org/10.21105/JOSS.00456

[9] David Coleman, Ioan A. S,ucan, Sachin Chitta, and Nikolaus Correll. 2014. Re-
ducing the Barrier to Entry of Complex Robotic Software: a MoveIt! Case
Study. Journal of Software Engineering for Robotics 5, 1 (May 2014), 3–16.
http://arxiv.org/abs/1404.3785

[10] Andrei Cramariuc, Aleksandar Petrov, Rohit Suri, Mayank Mittal, Roland Sieg-
wart, and Cesar Cadena. 2020. Learning Camera Miscalibration Detection.
In International Conference on Robotics and Automation. 4997–5003. https:
//doi.org/10.1109/ICRA40945.2020.9197378

[11] Sandipan Das, Navid Mahabadi, Addi Djikic, Cesar Nassir, Saikat Chatterjee, and
Maurice F. Fallon. 2022. Extrinsic Calibration and Veri�cation of Multiple Non-
overlapping Field of View Lidar Sensors. In International Conference on Robotics
and Automation. 919–925. https://doi.org/10.1109/ICRA46639.2022.9811704

[12] Byron DeVries, Erik M. Fredericks, and Betty H. C. Cheng. 2021. Analysis and
Monitoring of Cyber-Physical Systems via Environmental Domain Knowledge &
Modeling. In International Symposium on Software Engineering for Adaptive and
Self-Managing Systems. 11–17. https://doi.org/10.1109/SEAMS51251.2021.00013

[13] Tobias Dürschmid, Christopher S. Timperley, David Garlan, and Claire Le Goues.
2024. ROSInfer: Statically Inferring Behavioral Component Models for ROS-
based Robotics Systems. In International Conference on Software Engineering.
https://doi.org/10.1145/3597503.3639206

[14] Birhanu Eshete, Adolfo Villa�orita, and Komminist Weldemariam. 2011. Early
Detection of Security Miscon�guration Vulnerabilities in Web Applications. In
International Conference on Availability, Reliability and Security. 169–174. https:
//doi.org/10.1109/ARES.2011.31

[15] Pablo Estefo, Jocelyn Simmonds, Romain Robbes, and Johan Fabry. 2019. The
Robot Operating System: Package reuse and community dynamics. Journal of
Systems and Software (2019), 226–242. https://doi.org/10.1016/J.JSS.2019.02.024

[16] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermar-
rec. 2003. The many faces of publish/subscribe. Computing Surveys 35, 2 (jun
2003), 114–131. https://doi.org/10.1145/857076.857078

[17] Douglas Ezzy. 2013. Qualitative Analysis. Routledge. https://doi.org/10.4324/
9781315015484

[18] Anders Fischer-Nielsen, Zhoulai Fu, Ting Su, and Andrzej Wasowski. 2020. The
forgotten case of the dependency bugs: on the example of the robot operating
system. In International Conference on Software Engineering, Software Engineering
in Practice. 21–30. https://doi.org/10.1145/3377813.3381364

[19] Joshua Garcia, Yang Feng, Junjie Shen, Sumaya Almanee, Yuan Xia, and Qi Alfred
Chen. 2020. A comprehensive study of autonomous vehicle bugs. In International
Conference on Software Engineering. 385–396. https://doi.org/10.1145/3377811.
3380397

[20] Sergio García, Daniel Strüber, Davide Brugali, Thorsten Berger, and Patrizio
Pelliccione. 2020. Robotics software engineering: a perspective from the service
robotics domain. In European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 593–604. https://doi.org/10.1145/
3368089.3409743

[21] David Garlan, Robert Allen, and John Ockerbloom. 2009. Architectural Mismatch:
Why Reuse Is Still So Hard. IEEE Software 26, 4 (2009), 66–69. https://doi.org/10.
1109/MS.2009.86

[22] Barney G Glaser and Anselm L Strauss. 2017. Discovery of grounded theory:
Strategies for qualitative research. Aldine. https://doi.org/10.4324/9780203793206

[23] Ruidong Han, Chao Yang, Siqi Ma, Jianfeng Ma, Cong Sun, Juanru Li, and Elisa
Bertino. 2022. Control Parameters Considered Harmful: Detecting Range Speci-
�cation Bugs in Drone Con�guration Modules via Learning-Guided Search. In
International Conference on Software Engineering. 462–473. https://doi.org/10.
1145/3510003.3510084

[24] Eric Heiden, Christopher E. Denniston, DavidMillard, Fabio Ramos, and Gaurav S.
Sukhatme. 2022. Probabilistic Inference of Simulation Parameters via Parallel
Di�erentiable Simulation. In International Conference on Robotics and Automation.
3638–3645. https://doi.org/10.1109/ICRA46639.2022.9812293

[25] Peng Huang, William J. Bolosky, Abhishek Singh, and Yuanyuan Zhou. 2015.
ConfValley: a systematic con�guration validation framework for cloud services.
In European Conference on Computer Systems. 19:1–19:16. https://doi.org/10.1145/
2741948.2741963

[26] Ajay Kumar Jha, Sunghee Lee, and Woo Jin Lee. 2017. Developer mistakes
in writing Android manifests: an empirical study of con�guration errors. In
International Conference on Mining Software Repositories. 25–36. https://doi.org/
10.1109/MSR.2017.41

[27] Chijung Jung, Ali Ahad, Jinho Jung, Sebastian G. Elbaum, and Yonghwi Kwon.
2021. Swarmbug: debugging con�guration bugs in swarm robotics. In European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 868–880. https://doi.org/10.1145/3468264.3468601

[28] Sayali Kate, Michael Chinn, Hongjun Choi, Xiangyu Zhang, and Sebastian G.
Elbaum. 2021. PHYSFRAME: type checking physical frames of reference for
robotic systems. In European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 45–56. https://doi.org/10.1145/3468264.
3468608

[29] Sayali Kate, John-Paul Ore, Xiangyu Zhang, Sebastian G. Elbaum, and Zhaogui Xu.
2018. Phys: probabilistic physical unit assignment and inconsistency detection.
In European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 563–573. https://doi.org/10.1145/3236024.3236035

[30] Ameya Ketkar, Daniel Ramos, Lazaro Clapp, Raj Barik, and Murali Krishna
Ramanathan. 2024. A Lightweight Polyglot Code Transformation Language.
Proceedings of the ACM on Programming Languages 8, PLDI (2024), 1288–1312.
https://doi.org/10.1145/3656429

[31] Seulbae Kim and Taesoo Kim. 2022. RoboFuzz: fuzzing robotic systems over
robot operating system (ROS) for �nding correctness bugs. In European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
447–458. https://doi.org/10.1145/3540250.3549164

[32] Sophia Kolak, Afsoon Afzal, Michael Hilton, Claire Le Goues, and Christopher
S Timperley. 2020. It Takes a Village To Build a Robot: An Empirical Study of
the ROS Ecosystem. In International Conference on Software Maintenance and
Evolution. 430–440. https://doi.org/10.1109/ICSME46990.2020.00048

[33] Sitar Kortik and Tejas Kumar Shastha. 2021. Formal Veri�cation of ROS Based
Systems Using a Linear Logic Theorem Prover. In International Conference on
Robotics and Automation. 9368–9374. https://doi.org/10.1109/ICRA48506.2021.
9561191

[34] Tomaž Kosar, Sudev Bohra, andMarjanMernik. 2016. Domain-Speci�c Languages:
A Systematic Mapping Study. Information and Software Technology 71 (2016),
77–91. https://doi.org/10.1016/j.infsof.2015.11.001

[35] William Landi. 1992. Undecidability of static analysis. Letters Programming
Language Systems 1, 4 (dec 1992), 323–337. https://doi.org/10.1145/161494.161501

[36] Xiangke Liao, Shulin Zhou, Shanshan Li, Zhouyang Jia, Xiaodong Liu, and
Haochen He. 2018. Do You Really Know How to Con�gure Your Software?
Con�guration Constraints in Source Code May Help. Transactions on Reliability
67, 3 (2018), 832–846. https://doi.org/10.1109/TR.2018.2834419

[37] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William
Woodall. 2022. Robot Operating System 2: Design, architecture, and uses in
the wild. Science Robotics 7, 66 (2022). https://doi.org/10.1126/SCIROBOTICS.
ABM6074

[38] Steve Macenski, Tom Moore, David V. Lu, Alexey Merzlyakov, and Michael
Ferguson. 2023. From the desks of ROSmaintainers: A survey ofmodern& capable
mobile robotics algorithms in the robot operating system 2. Robotics Autonomous
Systems 168 (2023), 104493. https://doi.org/10.1016/J.ROBOT.2023.104493

[39] Ratul Mahajan, David Wetherall, and Thomas E. Anderson. 2002. Understanding
BGP miscon�guration. In Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication. 3–16. https://doi.org/10.1145/633025.
633027

[40] T. Moore and D. Stouch. 2014. A Generalized Extended Kalman Filter Implemen-
tation for the Robot Operating System. In International Conference on Intelligent
Autonomous Systems. 335–348. https://doi.org/10.1007/978-3-319-08338-4_25

[41] John-Paul Ore, Sebastian G. Elbaum, and Carrick Detweiler. 2017. Dimensional
inconsistencies in code and ROS messages: A study of 5.9M lines of code. In
International Conference on Intelligent Robots and Systems. 712–718. https://doi.

1172

https://doi.org/10.1109/ICST46399.2020.00020
https://doi.org/10.1109/ICRA46639.2022.9812349
https://doi.org/10.1016/J.JSS.2022.111574
https://doi.org/10.1016/J.JSS.2022.111574
https://doi.org/10.1109/MSR52588.2021.00060
https://doi.org/10.1145/3196558.3196562
https://doi.org/10.1109/ICRA57147.2024.10611413
https://doi.org/10.1109/IROS45743.2020.9341085
https://doi.org/10.1109/IROS45743.2020.9341085
https://doi.org/10.21105/JOSS.00456
http://arxiv.org/abs/1404.3785
https://doi.org/10.1109/ICRA40945.2020.9197378
https://doi.org/10.1109/ICRA40945.2020.9197378
https://doi.org/10.1109/ICRA46639.2022.9811704
https://doi.org/10.1109/SEAMS51251.2021.00013
https://doi.org/10.1145/3597503.3639206
https://doi.org/10.1109/ARES.2011.31
https://doi.org/10.1109/ARES.2011.31
https://doi.org/10.1016/J.JSS.2019.02.024
https://doi.org/10.1145/857076.857078
https://doi.org/10.4324/9781315015484
https://doi.org/10.4324/9781315015484
https://doi.org/10.1145/3377813.3381364
https://doi.org/10.1145/3377811.3380397
https://doi.org/10.1145/3377811.3380397
https://doi.org/10.1145/3368089.3409743
https://doi.org/10.1145/3368089.3409743
https://doi.org/10.1109/MS.2009.86
https://doi.org/10.1109/MS.2009.86
https://doi.org/10.4324/9780203793206
https://doi.org/10.1145/3510003.3510084
https://doi.org/10.1145/3510003.3510084
https://doi.org/10.1109/ICRA46639.2022.9812293
https://doi.org/10.1145/2741948.2741963
https://doi.org/10.1145/2741948.2741963
https://doi.org/10.1109/MSR.2017.41
https://doi.org/10.1109/MSR.2017.41
https://doi.org/10.1145/3468264.3468601
https://doi.org/10.1145/3468264.3468608
https://doi.org/10.1145/3468264.3468608
https://doi.org/10.1145/3236024.3236035
https://doi.org/10.1145/3656429
https://doi.org/10.1145/3540250.3549164
https://doi.org/10.1109/ICSME46990.2020.00048
https://doi.org/10.1109/ICRA48506.2021.9561191
https://doi.org/10.1109/ICRA48506.2021.9561191
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1145/161494.161501
https://doi.org/10.1109/TR.2018.2834419
https://doi.org/10.1126/SCIROBOTICS.ABM6074
https://doi.org/10.1126/SCIROBOTICS.ABM6074
https://doi.org/10.1016/J.ROBOT.2023.104493
https://doi.org/10.1145/633025.633027
https://doi.org/10.1145/633025.633027
https://doi.org/10.1007/978-3-319-08338-4_25
https://doi.org/10.1109/IROS.2017.8202229
https://doi.org/10.1109/IROS.2017.8202229

Understanding Misconfigurations in ROS: An Empirical Study and Current Approaches ISSTA ’24, September 16–20, 2024, Vienna, Austria

org/10.1109/IROS.2017.8202229
[42] Morgan Quigley, Ken Conle, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,

Rob Wheeler, and Andrew Ng. 2009. ROS: an open-source Robot Operating
System. ICRA Workshop on Open Source Software 3, 3.2 (01 2009), 1–6.

[43] Akond Rahman, Shazibul Islam Shamim, Dibyendu Brinto Bose, and Rahul Pan-
dita. 2023. Security Miscon�gurations in Open Source Kubernetes Manifests: An
Empirical Study. Transactions on Software Engineering and Methodology 32, 4
(2023), 99:1–99:36. https://doi.org/10.1145/3579639

[44] André Santos, Alcino Cunha, and Nuno Macedo. 2018. Property-based testing for
the robot operating system. In International Workshop on Automating TEST Case
Design, Selection, and Evaluation. 56–62. https://doi.org/10.1145/3278186.3278195

[45] André Santos, Alcino Cunha, and Nuno Macedo. 2021. The High-Assurance ROS
Framework. In International Workshop on Robotics Software Engineering. 37–40.
https://doi.org/10.1109/ROSE52553.2021.00013

[46] André Santos, Alcino Cunha, Nuno Macedo, Rafael Arrais, and Filipe Neves
dos Santos. 2017. Mining the usage patterns of ROS primitives. In International
Conference on Intelligent Robots and Systems. 3855–3860. https://doi.org/10.1109/
IROS.2017.8206237

[47] Hannah Snyder. 2019. Literature review as a research methodology: An overview
and guidelines. Journal of Business Research 104 (2019), 333–339. https://doi.org/
10.1016/j.jbusres.2019.07.039

[48] Max Taylor, Johnathon Aurand, Feng Qin, Xiaorui Wang, Brandon Henry,
and Xiangyu Zhang. 2023. SA4U: Practical Static Analysis for Unit Type Er-
ror Detection. In International Conference on Automated Software Engineering.
https://doi.org/10.1145/3551349.3556937

[49] Fangchao Tian, Peng Liang, and Muhammad Ali Babar. 2019. How Developers
Discuss Architecture Smells? An Exploratory Study on Stack Over�ow. In Inter-
national Conference on Software Architecture. 91–100. https://doi.org/10.1109/
ICSA.2019.00018

[50] Christopher Timperley and A Wąsowski. 2019. 188 ROS bugs later: Where do we
go from here? ROSCON’ 19 (2019). https://roscon.ros.org/2019/talks/roscon2019_
188_bugs_later.pdf

[51] Christopher Steven Timperley, Tobias Dürschmid, Bradley R. Schmerl, David
Garlan, and Claire Le Goues. 2022. ROSDiscover: Statically Detecting Run-Time
Architecture Miscon�gurations in Robotics Systems. In International Conference
on Software Architecture. 112–123. https://doi.org/10.1109/ICSA53651.2022.00019

[52] Christopher S. Timperley, Gijs van der Hoorn, André Santos, Harshavardhan
Deshpande, and Andrzej Wąsowski. 2024. ROBUST: 221 bugs in the Robot
Operating System. Empirical Software Engineering 29, 3 (2024), 57. https://doi.
org/10.1007/S10664-024-10440-0

[53] Tetsuya Uchiumi, Shinji Kikuchi, and Yasuhide Matsumoto. 2012. Miscon�gura-
tion detection for cloud datacenters using decision tree analysis. In Asia-Paci�c
Network Operations and Management Symposium. 1–4. https://doi.org/10.1109/
APNOMS.2012.6356072

[54] Dinghua Wang, Shuqing Li, Guanping Xiao, Yepang Liu, and Yulei Sui. 2021. An
exploratory study of autopilot software bugs in unmanned aerial vehicles. In
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 20–31. https://doi.org/10.1145/3468264.3468559

[55] Dennis Leroy Wigand, Niels Dehio, and Sebastian Wrede. 2020. Model-Based
Speci�cation of Control Architectures for Compliant Interaction with the Envi-
ronment. In International Conference on Intelligent Robots and Systems. 7241–7248.
https://doi.org/10.1109/IROS45743.2020.9340718

[56] Thomas Witte and Matthias Tichy. 2018. Checking consistency of robot software
architectures in ROS. In Workshop on Robotics Software Engineering. 1–8. https:
//doi.org/10.1145/3196558.3196559

[57] Valentin Wüest, Vijay Kumar, and Giuseppe Loianno. 2019. Online Estimation of
Geometric and Inertia Parameters for Multirotor Aerial Vehicles. In International
Conference on Robotics and Automation. 1884–1890. https://doi.org/10.1109/ICRA.
2019.8794274

[58] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng and† Tianwei Sheng, Ding
Yuan, Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do not blame users for
miscon�gurations. In Symposium on Operating Systems Principles. 244–259. https:
//doi.org/10.1145/2517349.2522727

[59] Tianyin Xu and Yuanyuan Zhou. 2015. Systems Approaches to Tackling
Con�guration Errors: A Survey. Computing Surveys 47, 4 (2015), 70:1–70:41.
https://doi.org/10.1145/2791577

[60] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasun-
daram, and Shankar Pasupathy. 2011. An empirical study on con�guration errors
in commercial and open source systems. In Symposium on Operating Systems
Principles. 159–172. https://doi.org/10.1145/2043556.2043572

[61] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasun-
daram, and Shankar Pasupathy. 2011. An empirical study on con�guration errors
in commercial and open source systems. In Symposium on Operating Systems
Principles. 159–172. https://doi.org/10.1145/2043556.2043572

[62] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge, Vas-
anth Bala, Tianyin Xu, and Yuanyuan Zhou. 2014. EnCore: exploiting system
environment and correlation information for miscon�guration detection. In Ar-
chitectural Support for Programming Languages and Operating Systems. 687–700.
https://doi.org/10.1145/2541940.2541983

Received 2024-04-12; accepted 2024-07-03

1173

https://doi.org/10.1109/IROS.2017.8202229
https://doi.org/10.1145/3579639
https://doi.org/10.1145/3278186.3278195
https://doi.org/10.1109/ROSE52553.2021.00013
https://doi.org/10.1109/IROS.2017.8206237
https://doi.org/10.1109/IROS.2017.8206237
https://doi.org/10.1016/j.jbusres.2019.07.039
https://doi.org/10.1016/j.jbusres.2019.07.039
https://doi.org/10.1145/3551349.3556937
https://doi.org/10.1109/ICSA.2019.00018
https://doi.org/10.1109/ICSA.2019.00018
https://roscon.ros.org/2019/talks/roscon2019_188_bugs_later.pdf
https://roscon.ros.org/2019/talks/roscon2019_188_bugs_later.pdf
https://doi.org/10.1109/ICSA53651.2022.00019
https://doi.org/10.1007/S10664-024-10440-0
https://doi.org/10.1007/S10664-024-10440-0
https://doi.org/10.1109/APNOMS.2012.6356072
https://doi.org/10.1109/APNOMS.2012.6356072
https://doi.org/10.1145/3468264.3468559
https://doi.org/10.1109/IROS45743.2020.9340718
https://doi.org/10.1145/3196558.3196559
https://doi.org/10.1145/3196558.3196559
https://doi.org/10.1109/ICRA.2019.8794274
https://doi.org/10.1109/ICRA.2019.8794274
https://doi.org/10.1145/2517349.2522727
https://doi.org/10.1145/2517349.2522727
https://doi.org/10.1145/2791577
https://doi.org/10.1145/2043556.2043572
https://doi.org/10.1145/2043556.2043572
https://doi.org/10.1145/2541940.2541983

	Abstract
	1 Introduction
	2 Background
	3 Study of Misconfigurations
	3.1 Methodology
	3.2 Threats to Validity
	3.3 Results

	4 Study of Existing Tools
	4.1 Methodology
	4.2 Threats to Validity
	4.3 Results

	5 Related Work
	6 Discussion
	7 Concluding Remarks
	Acknowledgments
	References

