
Simulation for Robotics Test Automation:
Developer Perspectives

Afsoon Afzal,1 Deborah S. Katz,1 Claire Le Goues, and Christopher S. Timperley
Carnegie Mellon University, Pittsburgh, PA

Email: afsoona@cs.cmu.edu, dskatz@gmail.com, clegoues@cs.cmu.edu, ctimperley@cmu.edu

Abstract—Robotics simulation plays an important role in the
design, development, and verification and validation of robotics
systems. Simulation represents a potentially cheaper, safer, and
more reliable alternative to the widely used practice of manual
field testing, and introduces valuable opportunities for extensive
test automation. The goal of this paper is to develop a principled
understanding of the ways robotics developers use simulation in
their testing processes and the challenges they face in doing so.
This understanding can guide the improvement of simulators and
testing techniques for modern robotics development.

To that end, we conduct a survey of 82 robotics developers from
a diversity of backgrounds, addressing the current capabilities
and limits of simulation in practice. We find that simulation
is used by 84% of our participants for testing, and that many
participants want to use simulation as part of their test automa-
tion. Using qualitative and quantitative research methods, we
identify 10 high-level challenges that impede developers from
using simulation for manual and automated testing and in
general. These challenges include the gap between simulation
and reality, a lack of reproducibility, and considerable resource
costs associated with simulation. Finally, we outline ways in which
simulators can be improved for use as a means of verification and
validation and ways that the software engineering community can
contribute to these improvements.

Index Terms—robotics simulation challenges; robotics testing;
simulation testing; testing challenges; empirical study; practi-
tioner survey

I. INTRODUCTION

From autonomously driving trucks and cars to packaging
and shipping goods, robotics and autonomous systems are
set to play an important role in our lives for the indefinite
future [1]–[3]. Such systems have the potential to automate
or assist many dull, dirty, dangerous, and difficult jobs. In re-
sponse to the COVID-19 crisis, for example, robots have been
used to deliver food to quarantined patients, disinfect public
places, and cope with increased supply chain demands [4]–
[7]. However, these systems also present new and unexpected
opportunities for catastrophic failure, resulting in tremendous
economic and human damage [8]–[11].

It is therefore vital that we continue to develop effective
quality assurance techniques for robotics and autonomous sys-
tems. Presently, the predominant means of quality assurance
for robotics is field testing — testing robots in a physical
environment resembling the intended deployment [12], [13].
Field testing allows both the robot hardware and software stack

1The first two authors contributed equally to this work.

Fig. 1. A simulation of an unmanned ground vehicle, Jackal, in the Gazebo
simulator [Source: http://www.clearpathrobotics.com].

to be tested in a realistic and inherently complex environment.
However, field testing is time consuming and expensive, not
scalable, error-prone and potentially dangerous, and can only
be performed at the later stages of development when both the
software stack and hardware platform have reached maturity.

Simulation-based testing, in which the robot controller is
tested in a simulated environment, such as in Figure 1, is a
promising method for testing robotics systems that is cheaper,
safer, and more scalable than the manual process of field
testing, with significant potential for test automation [14]–[17].

Researchers have used simulation to effectively and au-
tomatically discover bugs in a variety of robot application
domains [18]–[21] and have shown that even cheaper, less-
realistic simulations are capable of revealing many bugs [15].
Numerous companies in the autonomy sector, such as
Uber [22], NVIDIA [23], and Waymo [24], use simulation
on a large scale to develop, train, and test their algorithms.

Given the considerable potential of simulation-based testing,
we set out to understand the extent to which simulation is used
for testing in practice and identify the barriers that prevent
wider use. Prior studies have examined technical features of
particular robotics simulators [25]–[27] but paid little attention
to their role in quality assurance or the challenges developers
face when using them. Instead, prior work on the challenges
of testing in robotics [13], [28] and cyber-physical systems
(CPSs) in general [12] broadly identifies simulation as a key



element of testing that requires improvement.
We conduct a study of robotics developers to understand

how they perceive simulation-based testing and what chal-
lenges they face when using simulators. Through a survey
of 82 robotics developers, we find that simulation is used
extensively for manual testing, especially during early stages
of design and development, but that simulation is rarely
used for automated testing. By analyzing participant responses
using grounded theory and other qualitative and quantitative
methods, we identified 10 challenges that make it difficult for
developers to use simulation in general (i.e., for any purpose),
for testing, and specifically for automated testing. The chal-
lenges include a lack of realism, a lack of reproducibility, and
the absence of automation features. The full list of challenges
is presented in Section IV (Results) in Figure 5.

Study results can inform the construction of a new gener-
ation of software-based simulators, designed to better accom-
modate developers’ needs for robotics testing. In particular,
we show how several key barriers that impede or prevent
simulation-based testing are incidental software engineering
challenges, such as the need for languages and tools to
construct test scenarios and environments. The software engi-
neering and testing communities are well positioned to study
and address these challenges of testability.

Overall, we make the following contributions:
• We conduct a study of 82 robotics developers from

a variety of organizations and with diverse levels of
experience in robotics.

• We find that developers are using simulation extensively
for testing their robots and that many developers want to
incorporate simulation into their test automation.

• We identify and explore ten key challenges that impede
or prevent developers from using simulation in general
and for manual and automated testing.

• We suggest ways in which the software engineering
community can help to lower or eliminate barriers to
simulation-based testing.

• We provide our survey materials and additional results to
allow the community to build on our research at https:
//doi.org/10.5281/zenodo.4444256.

II. ROBOTICS TESTING AND SIMULATION

Robots are CPSs that sense, process, and physically react to
information from the real world [29]. The robot controller gets
information about the environment through a collection of sen-
sors. As Figure 2 illustrates, the robot controller continuously
processes its sensor inputs and interacts with its environment
through a series of actuators, thereby forming a control loop.
End-to-end testing of robot controllers takes place in either
a physical, real-world environment as part of field testing, or
in a simulated environment in which the robot’s sensors and
actuators are replaced by virtual equivalents during simulation-
based testing, as shown in Figure 1.

Field testing does not adhere to the testing paradigms that
those in the software engineering community might expect.
For example, a field tester might run the robot through various

Sensing

Environment
Sensors

Actuating

Controller
Software

Actuators

Fig. 2. The high-level architecture of a robotics system interacting with the
environment, which may be physical or simulated. The controller software
receives and processes input from its sensors (e.g., camera, GPS), and
responds by actuating using its actuators (e.g., wheel motors).

scenarios, sometimes loosely specified, that fall within the
robot’s expected operating situations and informally evaluate
whether the robot does anything unexpected, often by visually
inspecting the robot or its logs. Field testing is constrained by
the physical robot hardware and environments available, and
as a result is not scalable. It can also be extremely expensive
and dangerous [11], [13], and is vulnerable to human error.

In simulation, on the other hand, the robots’ software
stack and, optionally, the hardware platform, are replicated by
connecting input-output channels (i.e., sensors and actuators)
to a virtual robot embodied in a simulated world. Simulation-
based testing encompasses a range of testing approaches
conducted in the simulated environment, including everything
from mimicking informal field testing in simulation, to creat-
ing a rigorous set of scenario inputs and using the simulator’s
logging outputs to determine whether the simulated robot ad-
heres to specific expectations for its behavior in each scenario.
Robotics testing approaches that have used simulation include:
model-based testing [30], metamorphic testing [31], property-
based testing [32], and robustness testing [33], [34]. Because
robot simulation does not require robotics hardware, it has
broader possibilities for use cases. For example, a simulated
robot can be tested in an environment, such as the surface of
Mars, that is unavailable to the tester in reality.

Simulation-based testing uses a virtual world produced by
a simulator that models the physical aspects of the robot
(e.g., kinematics), its operating environment (e.g., terrain,
obstacles, lighting, weather), and the interaction between them.
As illustrated in Figure 2, the simulator provides synthetic
sensor readings to the robot controller at a fixed interval and
listens to actuation signals from the robot controller (e.g.,
electronic speed control signals). The simulator performs a
stepwise simulation of the virtual world that models certain
physical interactions and phenomena at discrete time steps.

The two most popular forms of simulation-based testing
are hardware-in-the-loop testing (HIL) and software-in-the-
loop testing (SITL). During HIL, the robot controller software



runs on the robot’s embedded hardware that is connected to
a simulator that typically runs on a separate machine with
greater resources (e.g., dedicated GPU). SITL, on the other
hand, runs the robot controller software on the same machine
as the simulator. HIL is typically slower and more expensive
than SITL but can be used to test the integration between
the robot controller’s software and embedded hardware. For
the purposes of this paper, any discussion of simulation-based
testing includes both HIL and SITL, unless otherwise noted.

Numerous robotics simulators are available, each with dif-
ferent characteristics. General purpose simulators, such as
Gazebo [35], CoppeliaSim (formerly known as V-REP) [36],
Unity [37], and MuJoCo [38], can be used to model a wide
range of systems. Others, such as CARLA [39], LGSVL [40],
AirSim [41] and AADS [42], are specifically designed for
a certain robotics domain. These simulators differ vastly in
their capabilities, features, and performance [25]–[27], [43].
We do not focus on a particular simulator and instead study
the challenges of using robotics simulators in general.

III. METHODOLOGY

We aim to better understand the ways in which robotics
developers use simulation as part of testing processes, and
the challenges they face in doing so. The following sec-
tions describe our methodology by presenting our research
questions (Section III-A), survey design (Section III-B), par-
ticipant recruitment (Section III-C), and analysis methods
(Section III-D). Finally, we discuss some of the threats to the
validity of our study and their mitigation (Section III-E).

A. Research Questions

To assess the ways in which robotics developers use simu-
lation for testing, we first ask the following research question:

RQ1: To what extent do developers use simulation for testing
and test automation?

Following the first research question, we focus on identifying
the challenges robotics developers face when using simulation
for testing. These challenges consist of both general limita-
tions that impact all use-cases of simulation and challenges
that specifically affect testing and test automation. Making
the distinction between general limitations of simulators and
testing-related challenges allows us to better understand and
illustrate the issues that if resolved, can result in higher
adoption of simulation for testing. As a result, we categorize
the challenges of using simulation in three groups – general,
testing-specific, and test-automation-specific challenges – in
the following research questions:

RQ2: What challenges do developers face when using simu-
lation in general?

RQ3: What challenges do developers face when using simu-
lation for testing?

RQ4: What challenges do developers face when using simu-
lation for test automation?

R
Q

1 • Have you ever used a software-based simulator?
• For what purposes have you used software-based
simulation?

R
Q

2

• Please tell us about how you used
software-based simulation in [your latest] project?
• Have you ever decided not to use software-based
simulation for a project?

R
Q

3 • Which of these features are most useful when you
use software-based simulation, specifically for testing?

R
Q

4

• How did you use software-based simulation as
part of your test automation?
• For what reasons, if any, have you not chosen to
attempt to use software-based simulation for
(partially) automated testing?

Fig. 3. Examples of survey questions separated by their corresponding
research question (RQ). The full list of questions can be found at https:
//doi.org/10.5281/zenodo.4444256.

B. Survey Design

To answer our research questions, we conducted an online
survey of robotics developers in November 2019. We followed
best practices in survey design by explicitly breaking down
the research questions into targeted survey questions, creating
and pre-testing a pilot survey on a representative population
of sample respondents, and making adjustments based on
feedback until reaching saturation [44]–[46]. Examples of the
survey questions are presented in Figure 3.

To ensure a meaningful interpretation of results, we pro-
vided our participants with a definition for the term “testing”
as “any approach to finding errors in any part of a system (e.g.,
the software or hardware) by executing code used in the system
in whole or in part, which can take place at any stage of system
development and may be either automated or manual.” Note
that this definition is intentionally broader than that used in
our previous study on the challenges of testing robotic systems,
generally, which did not consider the manual use of simulation
during the early stages of development to be a form of
testing [13]. The full list of our survey questions, together with
terminology and examples, are provided as part of the supple-
mentary materials at https://doi.org/10.5281/zenodo.4444256.

C. Recruitment

To reach our intended audience (i.e., robotics developers),
we distributed our survey via social media outlets, email, and
several popular forums within the robotics community: the
Robot Operating System (ROS) and Robotics subreddits on
Reddit,1 the ROS Discourse,2 and the RoboCup forums.3 We
decided to advertise our survey to the ROS community as ROS
is a popular and widely used robotics software framework [47],
[48]. We also advertised our survey on Facebook and Twitter

1https://reddit.com
2https://discourse.ros.org
3http://lists.robocup.org/cgi-bin/mailman/listinfo



and posted a recruitment email to mailing lists for a university
robotics department and a robotics research institution.

In total, 151 participants took the survey, out of which 82
completed it. For the purpose of analysis, we only consider the
82 completed responses. All 82 participants who completed
the survey reported that they had used a robotics simulator.
Figure 4 presents the demographics of these 82 participants.
In terms of experience, more than two thirds of participants
(71.95%) reported having worked with robotics software for
more than three years. Most participants (79.27%) reported
that they had worked with robotics in academia at some point
during their life, and almost two thirds (65.85%) reported
working with robotics in industry at some point. Participants
reported that they currently work at organizations of varying
sizes. Overall, our study sample is composed of a diverse array
of candidates with differing levels of experience who have
worked in a variety of organizations, thus ensuring that the
results of the study are not limited to any one population.

D. Analysis

Our survey includes both quantitative (closed-ended) and
qualitative (open-ended) questions. To analyze the open-ended
responses, we used descriptive coding [49] to assign one or
more short labels, known as codes, to each data segment (i.e.,
a participant’s response to a given question), identifying the
topic(s) of that segment. After developing an initial set of
codes, we adjudicated to reach consistency and agreement,
then used code mapping to organize the codes into larger
categories [49]–[51]. Using the explicit mapping from sur-
vey questions to research questions, devised during survey
design, we aggregated the set of relevant categories for each
research question. Finally, we used axial coding to examine
relationships among categories and identify a small number of
overarching themes for each research question.

Throughout this paper, we present quotes directly taken
from participant responses. We have fixed minor grammatical
and spelling mistakes for better readability. We refer to each
participant by a unique number (e.g., P12), for anonymity.

E. Threats to Validity

To mitigate the threat of asking the wrong questions and
introducing bias in the wording of questions, we followed sur-
vey design best practices [44]–[46], such as the use of iterative
pilots, and included a number of open-ended questions to allow
participants to freely discuss topics of concern to them.

Our analysis of open-ended survey responses is a poten-
tial threat to internal validity. To mitigate this concern, we
followed established guidelines on qualitative and quantitative
studies [49]–[51]. As a post-study validation, we shared the
results and conclusions on several public platforms, including
those used for recruitment (Section III-C), and received posi-
tive feedback on our findings from the robotics community.

Although we received many responses from robotics devel-
opers, we cannot make broad claims on the generalizability
of our findings. To mitigate this threat, we distributed the

survey among robotics developers from different backgrounds
and organizations by targeting popular robotics platforms.

To promote further research, we share our recruitment
materials, questionnaire, codebook, and additional results at
the following URL: https://doi.org/10.5281/zenodo.4444256.

IV. RESULTS

In this section, we present the results of our study of
robotics developers on their use of simulation for testing,
and the challenges they face along the way. In Section IV-A,
we discuss the extent to which developers use simulation for
testing. We then present and analyze the challenges of using
simulators, summarized in Figure 5. Section IV-B discusses
challenges that apply broadly to many uses of simulation,
including design and development, in addition to testing.
Section IV-C narrows the focus to challenges that apply when
simulation is particularly used for testing, and Section IV-D
further narrows to the challenges specific to test automation.

A. RQ1: To what extent do developers use simulation for
testing and test automation?

Our survey asked participants about their use of simulation:
both broadly and specifically for testing robotics systems.
We find that our participants are unanimously familiar with
simulation, and they use it on a regular basis. 59 out of
82 (71.95%) participants reported that they used simulation
within the last month at the time of completing the survey.
When asked about their most recent project that involved
simulation, 51 of 82 (62.20%) participants reported that they
used a simulator daily, and 25 of 82 (30.49%) participants
reported that they used a simulator on a weekly basis.

Figure 6 presents the variety and popularity of purposes
for which our participants use simulation. Almost 84% of
participants have used simulation for testing, and testing is
the most popular use case for simulation. This suggests that
developers generally see value in using simulation for testing.

Participants reported using simulation for various forms of
testing, including: testing the underlying algorithms; variabil-
ity testing (e.g., testing the robot with different components);
sanity checking (e.g., checking software in simulation before
deploying it to the hardware); and multi-robot testing (e.g.,
simulating how robots will interact with each other).

Participants also reported a variety of reasons for using
simulation for testing. These include when it is unsuitable or
impractical to test on real hardware or in a real environment.
They also reported using simulation to better understand the
design and behavior of existing robotic systems and their asso-
ciated software, and to incorporate simulation into automated
robotics testing, including continuous integration (CI).

Of the 84% of participants who have used simulation for
testing, we find that 61% of them have also tried to use
simulation as part of their test automation. These findings
demonstrate that developers find simulation to be a valuable
tool for testing, and there is a desire to incorporate simulation-
based testing into their test automation processes.



Experience Organization Size of organization
Years of experience # % Type # % Number of people # %

Less than one year 10 12.20% Academia 65 79.27% 1–10 people 22 26.83%
Between one and three years 13 15.85% Industry 54 65.85% 11–50 people 23 28.05%
Between three and ten years 40 48.78% Individual 35 42.68% 51–100 people 9 10.98%
More than ten years 19 23.17% Government 12 14.63% More than 100 people 28 34.15%

Other 9 10.98%

Fig. 4. Demographics for the 82 survey participants that completed the survey in terms of their experience, the types of organization at which they had
worked, and the size of the most recent organization to which they belonged.

These results motivate the rest of our study, which looks
at the challenges robotics developers face using simulation.
Given the ubiquity of simulation and its importance to robotics
testing and development, there is great potential benefit from
lowering the barriers to using simulation, especially for testing.
We highlight these barriers to direct attention to areas in
which improvements to simulators may have the most impact,
thereby allowing developers to advance the state of software
engineering and quality assurance in robotics.�

�

�




Key Insight: Simulation is an essential tool for devel-
opers that is used extensively for building and testing
robot software. Given its importance, it is vital that we
better understand the challenges that prevent developers
from realizing its full potential.

B. RQ2: What challenges do developers face when using
simulation in general?

Although we find that simulation is popular among devel-
opers, 28 of 82 (34.15%) participants reported that there was
a project for which they decided to not use simulation. Their
reported reasons are given in Figure 7. By analyzing these
reasons along with the difficulties that participants experienced
when they did use simulation, we identified three high-level
challenges of using simulation in general, discussed below.

Reality gap: Simulation, by definition, creates an abstrac-
tion of the real world and the robotics hardware in it. As a
result, it can never be 100% accurate in representing all aspects
of the real environment. The sometimes inadequate represen-
tation of physical reality in simulation is known colloquially
as the reality gap. Many participants cited the reality gap both
as a challenge when trying to use simulation and a reason
not to use it in the first place. P33 notes that simulation can
produce unrealistic behaviors that would not occur in the real
world. P16 highlighted that accounting for all relevant physical
phenomena can also be challenging: “my simple simulation
model did not include a tire model, so simulations at higher
speeds did not account for realistic behaviors for cornering
or higher accelerations or deceleration.” In particular, realis-
tically modeling stochastic processes, such as signal noise,
and integrating those models into the simulation as a whole
is a challenge: P15 shared, “A classic problem is integrating

wireless network simulation with physical terrain simulation.
This also applies to GPS signal simulation, as well.”

For some, such as P29, the reality gap can be too large
to make simulation valuable: “too big discrepancy between
simulation results and reality (physical interaction).” For oth-
ers, simulation can still serve as a valuable tool despite the
existence of the reality gap. As P36 puts it, “Software behavior
in simulation is different compared to [the] real [world], so not
everything can be tested, but a lot can be.” In talking about
the reality gap, respondents faulted both the limitations of the
modeling formats and the limitations of the simulators.

Complexity: Accurate simulation of the physical world
is inherently challenging and involves composing various
models. Alongside the essential complexity of simulation are
sources of accidental complexity [52] that do not relate to
the fundamental challenges of simulation itself, but rather the
engineering difficulties faced when trying to use simulation.
For example, a lack of user-friendly features is a source of
accidental complexity. Sources of accidental complexity may
ultimately lead users to abandon or not use simulation at all.

Inaccurate, inadequate, or missing documentation can make
it difficult to learn and use a simulator. P22 highlights that a
“lack of documents for different platform types and sometimes
wrong documentation makes us lose a lot of time working on
[stuff] that will never work, for example, the Gazebo simulator
does not work well in Windows.” A language barrier may
cause documentation to be inaccessible, as reported by P74:
“The language was Japanese, but we don’t speak that language
so we couldn’t use well the simulator.”

Difficult-to-use application programming interfaces (APIs)
make it difficult to extend the simulator with new plugins.
P4 points out that “Gazebo is the de-facto [simulator] right
now and is poorly documented and difficult to customize to
any degree.” A lack of integration with popular computer
aided design (CAD) software (e.g., AutoCAD, SolidWorks)
and support for industry-standard 3D modeling formats (e.g.,
IFC), makes it difficult to import existing, high-quality models.

Together, these sources of complexity increase simulators’
learning curve and may lead developers to abandon or never
start to use them. P20 shared that there is a “steep learning
curve in understanding the test environment software setup
and libraries. Without a good software engineering skills the
simulated environment will not replicate the real environment.”



Challenge Description Representative quote

■ Reality gap The simulator does not sufficiently repli-
cate the real-world behavior of the robot
to a degree that is useful.

“[Simulation is] not realistic enough for accurately
modeling task; preferred running on real robot” – P33

■ Complexity The time and resources required to setup
a sufficiently accurate, useful simulator
could be better spent on other activities.

“It was easier and more accurate to setup and test on a
physical system than simulate” – P4

■ Lacking capabilities Simulators may not possess all of the
capabilities that users desire, or those sim-
ulators that do may be prohibitively expen-
sive.

“Most simulators are good at one thing, some are good
at simulating the vehicles (drone,robot,car,etc) some are
good at simulating the environment (good for generating
synthetic data) some are good at senors, some are good
at physics, some are good at pid control, etc. but not
one has all these attributes.” – P77

▲ Reproducibility Simulations are non-deterministic, making
it difficult to repeat simulations, recreate
issues encountered in simulation or on real
hardware, and track down problems.

“Deterministic execution: the same starting conditions
must produce absolutely identical results.” – P42

▲ Scenario and environment
construction

It is difficult to create the scenarios and en-
vironments required for testing the system
in simulation.

“Setting up a simulation environment is too much work,
so I don’t do it often.” – P38

▲ Resource costs The computational overhead of simulation
requires special hardware and computing
resources which adds to the financial cost
of testing.

“Simulating multiple cameras (vision sensors) with full
resolution at a high frame rate is usually very slow and
therefore not practical.” – P37

⋆ Automation features The simulator is not designed to be used
for automated testing and does not allow
headless, scripted or parallel execution.

“Most simulations are NOT designed to run headless,
nor are they easily scriptable for automatic invocation.”
– P34

⋆ Continuous integration It is difficult to deploy the simulator in
suitable environments for continuous inte-
gration (e.g., cloud computing servers).

“The simulation requires some computational resources
which can be difficult to be part of CI, especially when
our CI is running on the cloud” – P62

⋆ Simulator reliability The simulation is not reliable enough to
be used in test automation in terms of the
stability of the simulator software, and the
timing and synchronization issues intro-
duced by the simulator.

“There were many challenges - 1. Getting difference in
the real time and simulation time 2. Changing the entire
physics engine source code for our application 3. Glitch
during the process of trying to move the real hardware
with the simulation model.” – P80

⋆ Interface stability The simulator’s interface is not stable
enough or sufficiently well-documented
to work with existing code or testing
pipelines.

“[We have automation difficulties with] integration into
existing code, missing APIs, stability of libraries” – P28

Fig. 5. Summary of challenges participants encountered when using simulation in general (■), specifically for testing (▲), and for test automation (⋆).

84.15%

42.68%
48.78%

32.93%

63.41%

13.41%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Testing Designing
robots

Training AI
systems

Bench-
marking

Debugging Other

Fig. 6. An overview of the high-level reasons that participants gave for using
simulation (82 responses).

Lacking capabilities: Finding a simulator that provides
all of the characteristics a user desires can be challenging. P77
highlighted that, while it is possible to find a simulator that is
good in one particular aspect, it is hard to find a simulator that
is good in all desired aspects. As P4 pointed out, simulators
that do possess all of the desired qualities tend to be expensive:
“Adding plugins is usually very challenging, and the only good
frameworks that do any of this stuff well are very expensive
(V-Rep and Mujoco for example).”4

We asked which simulation features participants wanted
most but are unable to use in their current setups. Among the
most important features mentioned were the ability to simulate

4Coppelia Robotics informed the authors that V-REP has been re-branded
as CoppeliaSim and is free for educational and non-commercial applications.



Reason for not using simulation # %

Lack of time or resources 15 53.57%
Not realistic/accurate enough 15 53.57%
Lack of expertise or knowledge on how
to use software-based simulation

6 21.43%

There was no simulator for the robot 4 14.29%
Not applicable 4 14.29%
Too much time or compute resources 2 7.14%
Nobody suggested it 0 0.00%
Other 2 7.14%

Fig. 7. An overview of the reasons that participants gave for not using
simulation for a particular project, based on 28 responses.

at faster-than-real-time speeds (i.e., where the simulation clock
runs faster than the wall clock), native support for headless
(i.e., without the graphical user interface (GUI)) execution
(discussed in Section IV-D), and an easier means of construct-
ing environments and scenarios (discussed in Section IV-C).

Numerous participants wanted the ability to run simulation
at faster-than-real-time speeds but were unable to do so in
their current simulation setups. For example, P52 said, “We
needed to speed up simulation time, but that was difficult to
achieve without breaking the stability of the physics engine.”
This feature is useful not only for reducing the wall-clock
time taken to perform testing, but for other purposes, as
P62 highlighted: “Faster than real time is really important to
produce training data for deep learning.”

Several participants also desired features that would in-
crease simulation fidelity (i.e., how closely the simulation
mimics reality). P46 wanted support for “advanced materials
in environments (custom fluids, deformable containers, etc.).”
Interestingly, P69 desired the ability to tune the fidelity of
the simulation: “Ability for controllable physics fidelity. First
order to prove concepts then higher fidelity for validation.
Gazebo doesn’t have that.” Recent studies have shown that
low-fidelity simulation can effectively and inexpensively dis-
cover many bugs in a resource-limited environment [14]–[16].

Participants also specified other capabilities such as native
support for multi-robot simulation and large environments, and
support for efficiently distributing simulation computations
across multiple machines.

Ultimately, the complexities of setting up and using simu-
lation, the reality gap, and the time and resources necessary
to make the simulation useful led some participants to use
physical hardware instead. As P4 said, “It was easier and more
accurate to setup and test on a physical system than simulate.”�

�

�




Key Insight: Developers find considerable value in
simulation, but difficulties of learning and using sim-
ulators, combined with a lack of realism and specific
capabilities, constrain the way that developers use sim-
ulation. By alleviating these challenges, simulation can
be used for a wider set of domains and applications.

C. RQ3: What challenges do developers face when using
simulation for testing?

Participants reported a variety of challenges in attempts
to use simulation for testing, summarized in Figure 5. We
identified the following challenges that mainly affect the use
of simulation for testing:

Reproducibility: From inevitable sensor and actuator
inaccuracies to stochastic algorithms (e.g., vision and navi-
gation), robotics systems have numerous, inherent sources of
nondeterminism. Temporal effects (e.g., message timing and
ordering) can also lead to different outcomes. A deterministic
simulator should be able to simulate nondeterministic factors
but also allow reproducibility, in which it repeats a given
simulation with all of these factors behaving in the same
manner. For example, a deterministic simulator should be able
to execute two simulations of the same scenario, producing the
exact same messages in the exact same order. Such a simulator
would allow for consistent testing and fault diagnosis.

The lack of reproducibility and presence of non-
determinism in simulators lead to difficulties when testing,
as reported by participants. P42 highlighted that a “Lack of
deterministic execution of simulators leads to unrepeatable
results.” This points to a need to accurately reproduce system
failures that are discovered in testing, in order to diagnose and
debug those failures. If a tester cannot consistently reproduce
the failures detected in simulation, it will be difficult to
know whether changes made to the code have fixed the
problems. P7 pointed to the particular difficulty with achieving
reproducibility in Gazebo: “Resetting gazebo simulations was
not repeatable enough to get good data.” P48 and P81 also
mentioned a desire for reproducibility.

Consistent and systematic testing often relies on deter-
ministic test outcomes, particularly when incorporating test
automation and continuous integration tests, which rely on
automatically detecting when a test has failed.Flaky [53] and
non-deterministic tests may lead to a false conclusion that a
problematic software change does not have a problem (a false
negative) or that a good change has problems (a false positive).

Scenario and environment construction: Testing in sim-
ulation requires a simulated environment and a test scenario,
which can be understood as a set of instructions for the
robot under test. Participants reported difficulty in constructing
both environments and test scenarios. P38 said: “Setting up
a simulation environment is too much work, so I don’t do
it often,” and P3 contributed, “Scripting scenarios was not
easy. Adding different robot dynamics was also not easy.”
They wanted to be able to construct these more easily or
automatically. Participants pointed out that the scenarios or
environments they require sometimes must be created “by
hand,” which requires a heavy time investment and is subject
to inaccuracies. In recent years, high-level languages have
been proposed to aid the construction of rich driving scenes
in simulation [54]–[56]. P4 said, “Making URDF5 files is a

5Unified Robot Description Format (URDF) is an XML file format used in
robotics platforms to describe all elements of a robot.



tremendous pain as the only good way to do it right now
is by hand which is faulty and error prone,” while P67
wanted, “Automated generation of simulation environments
under some [custom] defined standards,” because “The auto-
mated simulation environment generation is not easy. Plenty
of handy work must be done by human operators.”

Resource costs: Simulation is computationally intensive.
It often benefits from specialized hardware, such as GPUs. Par-
ticipants report that hardware requirements contribute strongly
to the expense of simulation. These costs are compounded
when tests are run many times, such as in test automation. For
example, P42 reported that difficulties including simulation in
test automation include: “High hardware requirements (espe-
cially GPU-accelerated simulators) driving high cloud server
costs.” Participants reported problems with running simula-
tions in parallel or using distributed computing across several
machines. Participants also reported challenges in simulating
large environments and simulations of long duration, as they
became too resource-demanding to be practical. P67 requested,
“High computational performance when the environment size
grows large (Gazebo performance drops down rapidly when
the number of models raises).” Participants also had issues
with the cost of licenses for appropriate simulators. P66
reported that cost drove the choice not to use a given simulator:
“Back then, Webots was not free,” and P1 complained: “Not
to mention the licensing price for small companies.”�




�

	
Key Insight: 84% of participants used simulation for
testing, but a lack of reproducibility, the complexities of
scenario and environment construction, and considerable
resource costs limit the extent of such testing.

D. RQ4: What challenges do developers face when using
simulation for test automation?

Research has shown that test automation can provide many
benefits, including cost savings and higher software qual-
ity [57]. Despite the benefits of test automation, 27 of 69
(39.13%) participants who have used simulation for testing,
reported never attempting to use simulation for automated
testing. Responses indicated that the challenges with using
simulation, both in general and for testing, prevented partic-
ipants from attempting to incorporate it into test automation.
Their reasons fell into three general categories:

1) Lack of value, where they did not find test automation
valuable or necessary. As P24 mentioned “There were
no obvious test harnesses available for the simulation
environments I use and it did not seem obviously valuable
enough to implement myself.”

2) Distrust of simulation, in which the limitations of simu-
lation itself drove the decision to not use it in automated
testing. Reality gap and lacking capabilities, discussed in
Section IV-B, contribute to this belief. P33 mentioned,
“[Simulation is] not realistic enough for accurately mod-
eling task; preferred running on real robot,” and P20
believed that “Without a good software engineering skills

the simulated environment will not replicate the real
environment.”

3) Time and resource limitations, where the complexity of
the simulator (Section IV-B) and resource costs (Sec-
tion IV-C) prevented them from attempting test automa-
tion. P18 explained “[We did not attempt to use software-
based simulation for automated testing] due to the amount
of time needed to setup the automated testing. Even if I
think on the long term it cuts down development time,
my company does not allocate time for that.” and P17
simply reported that “[it] seemed very hard to do.”

Among 42 people who attempted to use simulation as part of
their test automation, 33 (78.57%) reported difficulties. Based
on their descriptions of these difficulties, we identified the fol-
lowing four challenges specifically affecting test automation:

Automation features: Although a GUI is an important
component of a simulator, participants reported a preference
towards running the simulator headless (i.e., without the GUI)
when used for test automation. Disabling the GUI should re-
duce the computational overhead of the simulator by avoiding
the need to render computation-heavy graphical models. Not
being able to run a simulator headless is one of the major
difficulties our participants faced in automation.

“Making the simulator run without GUI on our
Jenkins server turned out to be more difficult than
expected. We ended up having to connect a physical
display to the server machine in order to run the
simulation properly.” – P37

Furthermore, the ability to set up, monitor, and interact
with a simulation via scripting, without the need for manual
intervention, is vital for automation. Our participants reported
devising creative solutions in the absence of scripting support.
P8 shared, “Ursim6 needs click-automation to run without
human interaction.” In other words, they needed to use a tool
that simulated mouse clicks to run the simulator automatically.

Continuous integration (CI): CI is emerging as one of
the most successful techniques in automated software main-
tenance. CI systems can automate the building, testing, and
deployment of software. Research has shown that CI practices
have a positive effect on software quality and productivity [58].

CI, by definition, is an automated method, and in many
cases involves the use of cloud services such as TravisCI.
Our participants faced difficulties engineering the simulation
to be used in CI and run on cloud servers. For example, P66
shared “I wasn’t able to setup a CI pipeline which runs in
GPU machines, for use with rendering sensors.”

Many of these difficulties arise from missing automation
features (e.g., headless execution) and high resource costs
(e.g., requiring expensive, GPU-heavy hardware), discussed
earlier. P77 reported “It is expensive to spin up cloud GPU
VMs to run the simulator.”

Simulator reliability: One of the challenges of using a
simulator in a test automation pipeline is the reliability of the
simulator itself. In other words, participants reported facing

6Universal Robots Simulator https://www.universal-robots.com



unexpected crashes, and timing and synchronization issues
while using the simulator in automation. Robotics systems,
as timing-sensitive CPSs, can have their behavior distorted
when timing is distorted, such as when messages arrive out-
of-order or are dropped or deadlines are missed. P29, P54,
P73, and P80 all reported software stability and timing issues
as difficulties they faced for automation. P29 further elaborated
difficulty in ensuring a clean termination of the simulator. That
is, when the simulator crashes, it should properly store the logs
and results before termination of the simulation, and properly
kill all processes to prevent resource leaks. Clean termination
is particularly relevant to test automation. Resource leaks
can compound when simulations are repeated, as they are in
automated testing. Compounded resource leaks can reach the
point where they interfere with the ability to run additional
simulations and require manual intervention.

Interface stability: The stability of the simulator inter-
face can significantly impact the automation process because
inconsistent simulator APIs can lead to failures in client
applications [59]. Participants reported unstable and fragile
interfaces as a challenge for automation. For example, P39
mentioned “APIs are pretty fragile and a lot of engineering
need to be done to get it working.”

Five participants reported difficulties in integrating existing
code or infrastructure with simulation APIs. P80 mentioned
changing the entire physics engine source code for an appli-
cation. Participants specifically desired better integration with
the Robot Operating System (ROS). For example, P74 shared
“I would like that [the simulator] can be used with ROS.”�

�

�

�

Key Insight: Developers want to include simulation
as part of their test automation, but most developers
who attempt to do so face face numerous difficulties.
These difficulties include an absence of automation
features and a lack of reliability and API stability.
Ultimately, these challenges discourage developers from
using simulation for test automation, limit the extent to
which it is used, and prevent developers from leveraging
the benefits of continuous integration.

V. DISCUSSION

As robots and their associated codebases become larger and
more complex, the need for, and cost of, continuous verifica-
tion and validation will increase considerably. While field test-
ing is popular it will be unable to handle the increased needs
by itself because it is limited in practice by expense, hardware,
human resources, and safety [13]. Simulation-based testing
may serve as a cheaper, safer, and more reliable alternative by
offering a means of scalable test automation [57]. Indeed, 61%
of our survey participants reported that they had attempted
to use simulation as part of test automation, indicating that
practitioners have a strong interest in simulation-based testing.

Despite widespread interest, a multitude of challenges
prevent developers from readily enjoying the benefits of
simulation-based testing. A number of these challenges, such

as the need for sufficient physical fidelity (i.e., the reality
gap), are inherent challenges of building a simulator. Such
challenges are well studied and widely recognized by the
robotics and simulation community, and therefore outside the
purview of our recommendations. While the reality gap can
never fully be solved, the robotics and simulation community
can study the trade offs inherent in usefully modeling the
aspects that are important to simulating relevant systems.

However, there are incidental challenges of testability,
which are understudied but just as important as the inherent
challenges and also impede effective simulation-based testing.
These challenges include, but are not limited to, the ability to
reliably run simulations without the expensive and unnecessary
overhead of visualization (i.e., headless execution); the need
for a powerful, expressive language for constructing realistic
environments and scenarios; the ability to set up, monitor,
and interact with the simulation via scripting; and stability
in the simulator’s client interface. Interestingly, when partic-
ipants were asked to choose the simulator features that they
found most useful for testing, features related to testability
(e.g., “custom plugins”, “exposed APIs”, and “recording and
logging”) appeared as more popular than features related to the
underlying simulation (e.g., “advanced graphics” and “high-
performance physics engines”).7 Addressing these incidental
challenges can enable robotics developers to better take ad-
vantage of automated simulation-based testing.

Addressing the incidental challenges requires varying levels
of effort and expertise. Certain challenges can be largely fixed
with engineering effort and application of best practices from
the software engineering community. For example, automa-
tion features (e.g., headless operation), continuous integration
support, and simulator reliability are all mainly engineering
challenges. Scenario construction can be addressed through
the development and application of domain-specific languages,
discussed in Section VI.

In other cases, the challenges can be addressed but are
subject to certain limitations. For example, while it may not be
realistic to expect indefinite interface stability from software
that must change to fit evolving needs, some problems may
be ameliorated by following good API design and docu-
mentation best practices [60] and engineering for backwards
compatibility. Challenges in this category also include lacking
capabilities, reproducibility, resource costs, and complexity.
For lacking capabilities, it is unlikely that one simulator would
provide all capabilities needed for every possible use case, but
it is more realistic to engineer simulators that are extensible
or tailored for the capabilities needed for individual use cases.
While it would be possible to control some factors to create
reproducibility, there is always a trade off against realistically
modeling relevant nondeterministic phenomena. For resource
costs, there is a trade off between the desired property of high
fidelity and the corresponding resource cost. Because of the
inherent complexity of the tasks needed in simulation, there

7The full list of these features and their ranking according to the participants
can be found as part of our supplementary material.



will always be a degree of complexity in learning the simulator.
The complexity and learning curve can be lessened with good
design and documentation but will never disappear entirely.

From participant responses and our own experience, we
observe that most popular simulation platforms (e.g., Gazebo)
are predominantly designed to support manual testing during
the earlier stages of robot development; test automation, on
the other hand, does not appear to have been considered as an
explicit use case by popular simulation platforms. To support
scalable automation of simulation-based testing as part of
continuous process of verification and validation, simulators
should address the incidental challenges discussed earlier. We
believe that the software engineering and testing communities
are well-equipped to address these incidental challenges as
they have studied similar problems in other domains such as
distributed systems [61]–[64]. We call upon these communities
to work alongside robotics and simulator developers to study
and address these incidental testability challenges.

VI. RELATED WORK

Simulator Comparisons: As mentioned earlier, there are
numerous robotics simulators which have different charac-
teristics, such as: paid or free, general-purpose or domain-
specific [35]–[42], [65]–[67]. Researchers and end users have
long evaluated and compared these simulators based on their
features, capabilities in representing the real world, and per-
formance [25]–[27], [43], [68], [69]. In one such study, de
Melo et al. compare the three most popular general-purpose
simulators, by replicating the same standard 3D scene in each
simulator [26]. Staranowicz and Mariottini present a detailed
overview and comparison of eleven commercial and open-
source robotics simulators [25]. Similarly, Erez et al. compare
five robotics simulators and find that each performs best on
the type of system it was designed and optimized for [43].

Our paper differs from the aforementioned studies. Rather
than comparing a set of robotics simulators, our paper broadly
investigates the challenges of using simulators, with a focus
on using simulators for manual and automated testing. Unlike
prior studies, this investigation is conducted empirically.

Simulator Development: There is continued development
and improvement of simulators. While some of these new
developments address issues this paper identifies, considerable
room for improvement remains. Several recent simulators are
specialized for particular domains: CARLA [39], LGSVL [40],
and AADS [42] are for automated driving applications, while
AirSim [41] simulates a wider variety of autonomous vehi-
cles. Notably, these simulators are built on top of popular
video game engines and support complex, dynamic urban
environments. AADS [42] enhances visual fidelity, allowing
for more realistic perception component testing. By contrast,
Ignition Gazebo [65], the descendant of the Gazebo simulator,
is agnostic to application and domain and supports various
rendering and physics backends, allowing customization (e.g.,
optimizing for fidelity or performance). AWS RoboMaker [66]
is a web-based IDE, simulator, and fleet management front-
end designed for easier development, testing, and deployment.

RoboMaker internally builds on top of Gazebo by adding
infrastructure for parallel simulations and automatic hardware
scaling, and providing prebuilt environments. Although each
simulator addresses at least one of the identified challenges, it
is as yet unclear whether they address enough of developers’
needs in the right combinations to succeed.

Testing Robotics Systems: Testing robotics systems
presents unique problems. Beschastnikh et al. outline some
of the challenges and drawbacks to existing approaches to
debugging distributed systems, such as robotics systems [70].
Zheng et al. point out the challenges of applying verification
to CPSs [12], [71]. Several approaches have addressed aspects
of the problems in testing these systems. Sotiropoulos et
al. motivate testing robotics in simulation and demonstrate
the approach’s effectiveness in some domains [14]. Tuncali
et al. define an approach that relies on well-defined system
requirements, which are absent in many systems [20]. Tim-
perley et al. attempt to categorize real bugs reported in the
ArduPilot autonomous vehicle software as to whether they can
be reproduced and/or detected in simulation [15].

Recent work on testing in simulation for robotics systems
looks at a range of issues, including: simulating the human
experience of being in a self-driving car [72]; accurately
simulating vehicle hardware and its interaction with the envi-
ronment [73], [74]; and automatically generating test scenarios
for the vehicles in simulation [18], [75], [76].

As part of a study to determine the general challenges
of testing robotic systems, Afzal et al. also find that few
developers use simulation for test automation [13]. In this
study, we investigate the challenges that deter developers from
using simulation for test automation.

VII. CONCLUSION

In this paper, we conducted a study of 82 robotics develop-
ers to explore how robotics simulators are used and the chal-
lenges that developers commonly face when using simulation
for general purposes, testing, and test automation. Our results
indicate that simulation is a popular tool among robotics
developers and is commonly used for testing with 84% of
participants reporting having used simulation for testing, 61%
of whom have also used simulation as part of their test
automation. We identified 10 high-level challenges associated
with using simulation, and discussed these challenges in detail.
We further outlined ideas on how the software engineering and
testing communities can tackle these challenges to unlock the
full potential of simulation-based testing.

ACKNOWLEDGMENT

We would like to thank both the ROS and Reddit communi-
ties, and in particular, Chris Volkoff and Olly Smith, for their
invaluable support in distributing our survey. We also thank the
ICST reviewers for their particularly insightful comments. This
research was partially funded by AFRL (#OSR-4066), DARPA
(#FA8750-16-2-0042), and the NSF (#CCF-1563797): the
authors are grateful for their support. Any opinions, findings,
or recommendations expressed are those of the authors and do
not necessarily reflect those of the US Government.



REFERENCES

[1] R. Cellan-Jones, “Robots ’to replace up to 20 million factory jobs’
by 2030,” BBC News. [Online]. Available: https://www.bbc.com/news/
business-48760799

[2] R. Heilweil, “Networks of self-driving trucks are becoming a reality in
the US,” Vox. [Online]. Available: https://www.vox.com/recode/2020/7/
1/21308539/self-driving-autonomous-trucks-ups-freight-network

[3] Hyperdrive, “The state of the self-driving car race 2020,”
Bloomberg. [Online]. Available: https://www.bloomberg.com/features/
2020-self-driving-car-race

[4] D. Berreby, “The pandemic has been good for one
kind of worker: robots,” National Geographic. [On-
line]. Available: https://www.nationalgeographic.com/science/2020/09/
how-pandemic-is-good-for-robots

[5] Z. Thomas, “Coronavirus: Will covid-19 speed up the use of
robots to replace human workers?” BBC News. [Online]. Available:
https://www.bbc.com/news/technology-52340651

[6] N. Statt, “Boston Dynamics’ Spot robot is helping
hospitals remotely treat coronavirus patients,” The Verge.
[Online]. Available: https://www.theverge.com/2020/4/23/21231855/
boston-dynamics-spot-robot-covid-19-coronavirus-telemedicine

[7] M. Belko, “Airport using robots, UV light to combat
COVID-19,” Pittsburgh Post-Gazette. [Online]. Available:
https://www.post-gazette.com/business/development/2020/05/05/
Pittsburgh-International-Airport-COVID-19-Carnegie-Robotics/stories/
202005050120

[8] S. O’Kane, “Boeing finds another software problem on the 737
Max,” The Verge. [Online]. Available: https://www.theverge.com/2020/
2/6/21126364/boeing-737-max-software-glitch-flaw-problem

[9] M. Wall, “European Mars lander crashed due to data glitch,
ESA concludes,” Space. [Online]. Available: https://www.space.com/
37015-schiaparelli-mars-lander-crash-investigation-complete.html

[10] R. N. Charette, “Nissan recalls nearly 1 million
cars for air bag software fix,” IEEE Spectrum. [On-
line]. Available: https://spectrum.ieee.org/riskfactor/transportation/
safety/nissan-recalls-nearly-1-million-cars-for-airbag-software-fix

[11] P. McCausland, “Self-driving Uber car that hit and killed
woman did not recognize that pedestrians jaywalk,” NBC
News. [Online]. Available: https://www.nbcnews.com/tech/tech-news/
self-driving-uber-car-hit-killed-woman-did-not-recognize-n1079281

[12] X. Zheng, C. Julien, M. Kim, and S. Khurshid, “Perceptions on the state
of the art in verification and validation in cyber-physical systems,” IEEE
Systems Journal, vol. 11, no. 4, pp. 2614–2627, Dec 2017.

[13] A. Afzal, C. Le Goues, M. Hilton, and C. S. Timperley, “A study on
challenges of testing robotic systems,” ser. ICST ’20, 2020, pp. 96–107.

[14] T. Sotiropoulos, H. Waeselynck, J. Guiochet, and F. Ingrand, “Can
robot navigation bugs be found in simulation? An exploratory study,”
in Software Quality, Reliability and Security, ser. QRS ’17, 2017, pp.
150–159.

[15] C. S. Timperley, A. Afzal, D. S. Katz, J. M. Hernandez, and C. Le Goues,
“Crashing simulated planes is cheap: Can simulation detect robotics bugs
early?” in International Conference on Software Testing, Validation, and
Verification, ser. ICST ’18, 2018, pp. 331–342.

[16] C. Robert, T. Sotiropoulos, J. Guiochet, H. Waeselynck, and S. Vernhes,
“The virtual lands of Oz: testing an agribot in simulation,” Empirical
Software Engineering, 2020.

[17] C. Gladisch, T. Heinz, C. Heinzemann, J. Oehlerking, A. von Viet-
inghoff, and T. Pfitzer, “Experience paper: Search-based testing in auto-
mated driving control applications,” in Automated Software Engineering,
ser. ASE ’19, 2019, pp. 26–37.

[18] A. Gambi, M. Mueller, and G. Fraser, “Automatically testing self-driving
cars with search-based procedural content generation,” in International
Symposium on Software Testing and Analysis, ser. ISSTA ’19, 2019, pp.
318–328.

[19] G. E. Mullins, P. G. Stankiewicz, and S. K. Gupta, “Automated gen-
eration of diverse and challenging scenarios for test and evaluation
of autonomous vehicles,” in International Conference on Robotics and
Automation, ser. ICRA ’17, 2017, pp. 1443–1450.

[20] C. E. Tuncali, T. P. Pavlic, and G. Fainekos, “Utilizing S-TaLiRo as
an automatic test generation framework for autonomous vehicles,” in
Intelligent Transportation Systems, ser. ITSC ’16, 2016, pp. 1470–1475.

[21] E. Rocklage, H. Kraft, A. Karatas, and J. Seewig, “Automated scenario
generation for regression testing of autonomous vehicles,” in Interna-
tional Conference on Intelligent Transportation Systems, ser. ITSC ’17,
2017, pp. 476–483.

[22] Uber, “Self-Driving Simulation.” [Online]. Available: https://www.uber.
com/us/en/atg/research-and-development/simulation

[23] NVIDIA, “NVIDIA DRIVE Constellation: Virtual reality autonomous
vehicle simulator.” [Online]. Available: https://www.nvidia.com/en-us/
self-driving-cars/drive-constellation

[24] Waymo, “Waymo safety report: On the road to fully self-driving,”
2018. [Online]. Available: https://waymo.com/safety

[25] A. Staranowicz and G. L. Mariottini, “A survey and comparison of
commercial and open-source robotic simulator software,” in Pervasive
Technologies Related to Assitive Environments, ser. PETRA ’11, 2011,
pp. 56:1–56:8.

[26] M. S. P. de Melo, J. G. da Silva Neto, P. J. L. da Silva, J. M. X. N.
Teixeira, and V. Teichrieb, “Analysis and comparison of robotics 3D
simulators,” in Symposium on Virtual and Augmented Reality, ser. SVR
’19, 2019, pp. 242–251.

[27] L. Pitonakova, M. Giuliani, A. Pipe, and A. Winfield, “Feature and
performance comparison of the V-REP, Gazebo and ARGoS robot sim-
ulators,” in Annual Conference Towards Autonomous Robotic Systems,
2018, pp. 357–368.

[28] M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, and M. Fisher,
“Formal specification and verification of autonomous robotic systems:
A survey,” ACM Computing Surveys, vol. 52, no. 5, pp. 1–41, 2019.

[29] C. S. R. at Max Planck Institutes, “Robotics and Cyber-Physical
Systems.” [Online]. Available: https://www.cis.mpg.de/robotics

[30] G. Kanter and J. Vain, “TestIt: an open-source scalable long-term
autonomy testing toolkit for ROS,” in Dependable Systems, Services
and Technologies, ser. DESSERT ’19, 2019, pp. 45–50.

[31] M. Lindvall, A. Porter, G. Magnusson, and C. Schulze, “Metamorphic
model-based testing of autonomous systems,” in Metamorphic Testing
(MET), ser. MET ’17, 2017, pp. 35–41.

[32] A. Santos, A. Cunha, and N. Macedo, “Property-based testing for the
Robot Operating System,” in Automating TEST Case Design, Selection,
and Evaluation, ser. A-TEST ’18, 2018, pp. 56–62.

[33] C. Hutchison, M. Zizyte, P. E. Lanigan, D. Guttendorf, M. Wagner,
C. Le Goues, and P. Koopman, “Robustness testing of autonomy soft-
ware,” in International Conference on Software Engineering - Software
Engineering in Practice, ser. ICSE-SEIP ’18, 2018, pp. 276–285.

[34] D. S. Katz, M. Zizyte, C. Hutchison, D. Guttendorf, P. E. Lanigan,
E. Sample, P. Koopman, M. Wagner, and C. Le Goues, “Robustness
inside out testing,” in Dependable Systems and Networks – Industry
Track, ser. DSN-I, 2020, pp. 1–4.

[35] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in International Conference on
Intelligent Robots and Systems, ser. IROS ’04, vol. 3, 2004, pp. 2149–
2154.

[36] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A versatile and
scalable robot simulation framework,” in Intelligent Robots and Systems,
ser. IROS ’13, 2013, pp. 1321–1326.

[37] A. Juliani, V.-P. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, and
D. Lange, “Unity: A general platform for intelligent agents,” arXiv
preprint arXiv:1809.02627, 2018.

[38] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in International Conference on Intelligent Robots
and Systems. IEEE, 2012, pp. 5026–5033.

[39] A. Dosovitskiy, G. Ros, F. Codevilla, A. López, and V. Koltun,
“CARLA: An open urban driving simulator,” in Conference on Robot
Learning, ser. CoRL, 2017, pp. 1–16.

[40] LG, “LGSVL Simulator.” [Online]. Available: https://www.
lgsvlsimulator.com

[41] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Field and Service
Robotics, M. Hutter and R. Siegwart, Eds., 2018, pp. 621–635.

[42] W. Li, C. W. Pan, R. Zhang, J. P. Ren, Y. X. Ma, J. Fang, F. L. Yan, Q. C.
Geng, X. Y. Huang, H. J. Gong, W. W. Xu, G. P. Wang, D. Manocha,
and R. G. Yang, “AADS: Augmented autonomous driving simulation
using data-driven algorithms,” Science Robotics, vol. 4, no. 28, 2019.

[43] T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for model-based
robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX,” in
International Conference on Robotics and Automation, ser. ICRA’15.
IEEE, 2015, pp. 4397–4404.



[44] B. A. Kitchenham and S. L. Pfleeger, “Principles of survey research:
Parts 1 – 6,” Software Engineering Notes, 1995 and 1996.

[45] M. Ciolkowski, O. Laitenberger, S. Vegas, and S. Biffl, Practical
Experiences in the Design and Conduct of Surveys in Empirical Software
Engineering. Springer Berlin Heidelberg, 2003, pp. 104–128.

[46] S. B. Robinson and K. F. Leonard, Designing Quality Survey Questions,
1st ed. SAGE Publications.

[47] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009, p. 5.

[48] K. Wyrobek, “The origin story of ROS, the Linux of
robotics.” [Online]. Available: https://spectrum.ieee.org/automaton/
robotics/robotics-software/the-origin-story-of-ros-the-linux-of-robotics

[49] J. Saldaña, The coding manual for qualitative researchers. Sage, 2015.
[50] K. M. MacQueen, E. McLellan-Lemal, K. Bartholow, and B. Milstein,

Team-based Codebook Development: Structure, Process, and Agreement.
Rowman Altamira, 2008, pp. 119–135.

[51] K. Charmaz, Constructing Grounded Theory. Sage, 2014.
[52] F. P. Brooks Jr., “No silver bullet: Essence and accidents of software

engineering,” Computer, vol. 20, no. 4, pp. 10–19, April 1987.
[53] J. Micco, “Flaky tests at Google and how we mitigate them,”

May 2016. [Online]. Available: https://testing.googleblog.com/2016/05/
flaky-tests-at-google-and-how-we.html

[54] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-
Vincentelli, and S. A. Seshia, “Scenic: a language for scenario specifi-
cation and scene generation,” in Conference on Programming Language
Design and Implementation, ser. PLDI ’19, 2019, pp. 63–78.

[55] R. Majumdar, A. Mathur, M. Pirron, L. Stegner, and D. Zufferey, “Para-
cosm: A language and tool for testing autonomous driving systems,”
arXiv preprint arXiv:1902.01084, 2019.

[56] F. Klück, Y. Li, M. Nica, J. Tao, and F. Wotawa, “Using ontologies
for test suites generation for automated and autonomous driving func-
tions,” in International Symposium on Software Reliability Engineering
Workshops, ser. ISSREW ’18. IEEE, 2018, pp. 118–123.

[57] V. Garousi and M. V. Mäntylä, “When and what to automate in software
testing? A multi-vocal literature review,” Information and Software
Technology, vol. 76, pp. 92–117, 2016.

[58] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,” in
International Conference on Automated Software Engineering, ser. ASE
’16, 2016, pp. 426–437.

[59] L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and impact
analysis of API breaking changes: A large-scale study,” in Software
Analysis, Evolution and Reengineering, ser. SANER ’17, 2017, pp. 138–
147.

[60] J. Bloch, “How to design a good API and why it matters,” in Companion
to Object-Oriented Programming Systems, Languages, and Applications,
ser. OOPSLA ’06, 2006, pp. 506–507.

[61] T. Leesatapornwongsa, J. F. Lukman, S. Lu, and H. S. Gunawi, “TaxDC:
A taxonomy of non-deterministic concurrency bugs in datacenter dis-
tributed systems,” in International Conference on Architectural Support
for Programming Languages and Operating Systems, 2016, pp. 517–
530.

[62] C. Boelmann, L. Schwittmann, M. Waltereit, M. Wander, and T. Weis,
“Application-level determinism in distributed systems,” in International
Conference on Parallel and Distributed Systems, ser. ICPADS ’16.
IEEE, 2016, pp. 989–998.

[63] H. Liu, G. Li, J. F. Lukman, J. Li, S. Lu, H. S. Gunawi, and C. Tian,
“Dcatch: Automatically detecting distributed concurrency bugs in cloud
systems,” Computer Architecture News, vol. 45, no. 1, pp. 677–691,
2017.

[64] I. Dhiah el Diehn, S. Alouneh, R. Obermaisser et al., “Incremental,
distributed, and concurrent service coordination for reliable and deter-
ministic systems-of-systems,” IEEE Systems Journal, 2020.

[65] Ignition Robotics, “Ignition Gazebo: A Robotic Simulator.” [Online].
Available: https://ignitionrobotics.org/libs/gazebo

[66] Amazon Web Services, “AWS RoboMaker.” [Online]. Available:
https://aws.amazon.com/robomaker

[67] O. Michel, “Cyberbotics Ltd. Webots™: Professional mobile robot
simulation,” International Journal of Advanced Robotic Systems, vol. 1,
no. 1, p. 5, 2004.

[68] A. M. Hertz, E. I. George, C. M. Vaccaro, and T. C. Brand, “Head-
to-head comparison of three virtual-reality robotic surgery simulators,”

Journal of the Society of Laparoendoscopic Surgeons, vol. 22, no. 1,
2018.

[69] R. R Shamshiri, I. A. Hameed, L. Pitonakova, C. Weltzien, S. K.
Balasundram, I. J Yule, T. E. Grift, and G. Chowdhary, “Simulation soft-
ware and virtual environments for acceleration of agricultural robotics:
Features highlights and performance comparison,” 2018.

[70] I. Beschastnikh, P. Wang, Y. Brun, and M. D. Ernst, “Debugging
distributed systems,” Queue, vol. 14, no. 2, pp. 91–110, 2016.

[71] X. Zheng and C. Julien, “Verification and validation in cyber physical
systems: Research challenges and a way forward,” in Software Engi-
neering for Smart Cyber-Physical Systems, 2015, pp. 15–18.

[72] D. Yeo, G. Kim, and S. Kim, “Toward immersive self-driving simula-
tions: Reports from a user study across six platforms,” in Conference on
Human Factors in Computing Systems, ser. CHI ’20, 2020, pp. 1–12.

[73] S. Chen, Y. Chen, S. Zhang, and N. Zheng, “A novel integrated
simulation and testing platform for self-driving cars with hardware in
the loop,” IEEE Transactions on Intelligent Vehicles, vol. 4, no. 3, pp.
425–436, 2019.

[74] T. Duy Son, A. Bhave, and H. Van der Auweraer, “Simulation-based test-
ing framework for autonomous driving development,” in International
Conference on Mechatronics (ICM), ser. ICM ’19, 2019, pp. 576–583.

[75] A. Gambi, T. Huynh, and G. Fraser, “Generating effective test cases
for self-driving cars from police reports,” in Joint Meeting of the
European Software Engineering Conference and the Symposium on The
Foundations of Software Engineering, ser. ESEC/FSE ’19, 2019, pp.
257–267.

[76] Y. Abeysirigoonawardena, F. Shkurti, and G. Dudek, “Generating ad-
versarial driving scenarios in high-fidelity simulators,” in International
Conference on Robotics and Automation, ser. ICRA ’19, 2019, pp. 8271–
8277.


