
It Takes a Village to Build a Robot:
An Empirical Study of The ROS Ecosystem

Sophia Kolak∗, Afsoon Afzal†, Claire Le Goues†, Michael Hilton†, and Christopher Steven Timperley†
∗Columbia University, New York, NY

†Carnegie Mellon University, Pittsburgh, PA
Email: sdk2147@columbia.edu, afsoona@cs.cmu.edu, clegoues@cs.cmu.edu, mhilton@cmu.edu, ctimperley@cmu.edu

Abstract—Over the past eleven years, the Robot Operating
System (ROS), has grown from a small research project into the
most popular framework for robotics development. Composed of
packages released on the Rosdistro package manager, ROS aims
to simplify development by providing reusable libraries, tools and
conventions for building a robot. Still, developing a complete
robot is a difficult task that involves bridging many technical
disciplines. Experts who create computer vision packages, for
instance, may need to rely on software designed by mechanical
engineers to implement motor control. As building a robot
requires domain expertise in software, mechanical, and electrical
engineering, as well as artificial intelligence and robotics, ROS
faces knowledge based barriers to collaboration.

In this paper, we examine how the necessity of domain
specific knowledge impacts the open source collaboration model.
We create a comprehensive corpus of package metadata and
dependencies over three years in the ROS ecosystem, analyze how
collaboration is structured, and study the dependency network
evolution. We find that the most widely used ROS packages
belong to a small cluster of foundational working groups (FWGs),
each organized around a different domain in robotics. We show
that the FWGs are growing at a slower rate than the rest of
the ecosystem, in terms of their membership and number of
packages, yet the number of dependencies on FWGs is increasing
at a faster rate. In addition, we mined all ROS packages on
GitHub, and showed that 82% rely exclusively on functionality
provided by FWGs. Finally, we investigate these highly influential
groups and describe the unique model of collaboration they
support in ROS.

Index Terms—robot operating system, software ecosystem,
software evolution, robotics software, collaboration

I. INTRODUCTION

The Robot Operating System (ROS) is a framework for
building robotics software, designed with the promise of
making development easier through modular design and code
reuse.1. It is widely used by robotics developers, and contains
5,798 packages across its 12 distributions.2

The stated goal of the ROS project is “to encourage col-
laborative robotics software development” [1]. Before ROS, it
was common for developers to write highly specific robotics
software for one project, and then start from scratch as soon
as they moved to a new job [2]. ROS’s innovation was its
promise of modularity—it sought to end wasteful practice by
letting developers borrow and share the parts of their robots
that could be reused.

1http://wiki.ros.org/ROS/Introduction
2https://index.ros.org/stats/

Developing a fully functional robotic system is a difficult
task that “no single individual, laboratory, or institution can
hope to do on their own” [1]. It requires expertise in many
different fields such as mechanical engineering, computer
science, electrical engineering, or even math and physics. For
example, experts who create computer vision packages may
need to rely on software designed by mechanical engineers
to implement motor control. As a result, the ROS framework
allows developers without domain expertise in many areas of
robotics to build on top of each others’ knowledge, and put
together a fully functional robot.

The ROS framework has indeed been successful in gathering
people with different backgrounds to compose the ecosys-
tem [3]. However, while this diversity is a strength for
ROS, it also presents a challenge as there are multiple sub-
communities focused on these different expertise areas.

Very few studies have looked at the ROS ecosystem. Pichler
et al. [4] investigate the quality of ROS packages, and the im-
pact of quality on popularity of the package in the ecosystem.
They show that the quality of a project does not correlate
with its usage. With a qualitative study, Alami et al. [5] found
that the implementation and execution of QA practices in the
ROS community are influenced by social and cultural factors.
However, none of these studies investigate the structure of the
ROS ecosystem and the format of collaboration deployed in
this ecosystem.

In addition to being understudied, the ROS ecosystem is
currently at the pivotal point of transitioning from its first
version (ROS) to the second major version (ROS2). By
studying ROS now, this work can help identify the underlying
structures necessary for the growth and maintenance of ROS,
as well as point out bottlenecks to avoid during the design and
implementation of the ecosystem for ROS2.

In this paper, we quantitatively examine the growth of the
ROS ecosystem and package dependency structure over three
years and on varying scales by collecting data on all ROS
packages released in the Kinetic distribution, and creating
a dependency graph of the ecosystem by parsing package
manifests. Using this data, we study the nature of collaboration
in the ROS ecosystem, and answer the following research
questions: RQ1) How is the ecosystem growing? We show
that the ROS ecosystem has been successfully attracting new
applications and developers at an exponential rate, and the
number of released packages has grown at a steadier, linear

http://wiki.ros.org/ROS/Introduction
https://index.ros.org/stats/


rate over the past three years; RQ2) How is the ROS ecosys-
tem structured? We find an extraordinary level of structure
and cooperation within the ROS ecosystem, facilitated by
its expertise-focused foundational working groups; and RQ3)
How do the foundational working groups contribute to the
ecosystem? We show that these working groups are the most
influential groups in the ecosystem, as they account for more
than 80% of all dependencies, and 82% of ROS applications
exclusively rely on the packages they release. However, their
membership has grown little in recent years, which may have
implications for the long-term health of the ecosystem.

In this paper, we make the following contributions:
• We create a database of packages within the ROS ecosys-

tem (Kinetic distribution) and their dependencies, with
the ability to create snapshots of the ecosystem over time.

• We examine all (released and unreleased) ROS packages
on GitHub along with their dependencies, and discover
over 200,000 Client applications that extend the ROS
framework.

• We analyze the level of growth in the ROS ecosystem,
and compare it to PyPI and Julia; two other software
ecosystems similar in age and/or size.

• We manually classify organizations contributing to the
ROS ecosystem, identify the structure of collaboration in
the ROS ecosystem, and show that foundational working
groups are the most influential organizations that account
for the vast majority of dependencies in the ecosystem.

The full data from this paper is publicly available at https:
//doi.org/10.5281/zenodo.3997720.

II. BACKGROUND

In this section, we introduce the reader to the ROS ecosys-
tem and package structure. The Robot Operating System
(ROS) [6] is a flexible framework for writing robotics soft-
ware. It is a collection of tools, libraries, and conventions that
aim to simplify the task of creating complex and robust robot
behavior across a wide variety of robotics platforms. ROS is
generally designed following publisher-subscriber architecture,
which allows it to be modular at a fine-grained scale.3 For
example, a ROS process (i.e., node) controls a LADAR sensor,
and another node controls the wheel motors. These nodes,
which can be from different packages, can communicate with
each other through message passing.

ROS is a relatively young framework (first released in
2009), and is currently used by thousands of people around
the world.4 It follows an annual release model that is both
similar to and linked to Ubuntu, and as of May 2020, there
have been 12 official, released ROS distributions (e.g., Lunar,
Kinetic, and Indigo). ROS is designed with the purpose
of encouraging collaborative robotics software development
by allowing robotics developers to build upon each other’s

3ROS also provides other methods of communication among processes such
as peer-to-peer request-reply service calls.

4ROS has more than 34,000 registered users on ROSanswers, the main
Q&A platform for ROS users: http://download.ros.org/downloads/metrics/
metrics-report-2019-07.pdf

<package format="2">
<name>robot_arm</name>
<version>1.2.3</version>
<description>controls robot arm</description>
<maintainer email="janedoe@osrf.org">Jane

Doe</maintainer>
<license>BSD</license>
<buildtool_depend>catkin</buildtool_depend>
<exec_depend version_gte="0.2.19">

python_qt_binding
</exec_depend>

</package>

Fig. 1. An example package.xml file for a sample package called
robot_arm.

work [1]. Here, we provide a high-level overview of the ROS
package structure and package distribution.

A. Package structure

All ROS packages follow a specific structure, and contain
an XML file with meta information about the package. This
manifest file, called package.xml, records basic infor-
mation about the package and its dependencies. Figure 1
illustrates a sample package.xml file, the package name,
version, description, maintainer, and license as well as its
dependencies. Multiple packages in ROS can also be organized
into a single metapackage, historically known as a stack.5

The declared dependencies in a package.xml file must
specify the name of the package, and the type of depen-
dency, and may optionally enforce a minimum, maximum,
or equivalent version of the package to depend on. For
instance, the robot_arm package in Figure 1 has a buildtool
dependency on the ROS package catkin, and an execution
dependency on the ROS package python_qt_binding.
This declaration does not specify a version of catkin; it
does specify a minimum version for its dependency on the
python_qt_binding package. If no version is specified,
ROS’s main package installer, rosinstall, downloads and in-
stalls the latest released version of a dependency. In practice,
most dependencies are simply specified by the name of the
package, meaning that the actual source code a package relies
on is ambiguous.

B. Package distributions

The ROS distributions and the stacks they contain are
managed by rosdistro, a tool that allows users to access the
full dependency tree and information of all packages and
repositories in the ROS ecosystem. Every ROS distribution
includes a distribution.yaml file, which follows the
format specified by rosdistro, and records information on
all packages in that distribution. Figure 2 shows a sample
distribution.yaml file for the Kinetic distribution with
a single package opencv3.

5http://wiki.ros.org/action/show/rosbuild/Stacks

https://doi.org/10.5281/zenodo.3997720
https://doi.org/10.5281/zenodo.3997720
http://download.ros.org/downloads/metrics/metrics-report-2019-07.pdf
http://download.ros.org/downloads/metrics/metrics-report-2019-07.pdf
http://wiki.ros.org/action/show/rosbuild/Stacks


release_platforms:
ubuntu:
- xenial

repositories:
opencv3:
release:
tags:
release:

release/Kinetic/{package}/{version}
url: https://github.com/ros-gbp/opencv3-

release.git
version: 3.3.1-5

status: maintained
type: distribution
version: 2

Fig. 2. Excerpt from a distribution.yaml file, showing how a sample
package (opencv3) is documented by the rosdistro.

Within a distribution.yaml file, each included pack-
age or stack has its own metadata entry, including as much or
as little information as the maintainer decides to include. For
instance, some package entries contain source, release, and
documentation URLs, with corresponding version and status
information for all three instances of the code. Other packages
in the YAML file contain only a documentation URL.
distribution.yaml files also do not maintain any

information about older versions of packages. When a new
version of a package in the distribution gets released, its entry
in the file is overwritten. This means that formerly released
versions of ROS packages are not explicitly recorded.

The distribution.yaml files are maintained on the
ROS GitHub repository.6 Between the first commit to
kinetic/distribution.yaml on March 4, 2016 and
our data collection on June 24, 2019, 8,957 commits altered
this file. As of June 24, 2019, distribution.yaml con-
tained information on 2,692 packages.

III. METHODOLOGY

The goal of this study is to investigate the ROS ecosystem to
gain a better understanding of how collaboration is conducted
at the package level in ROS. We address the following high-
level research questions:

• RQ1: How is the ecosystem growing?
• RQ2: How is the ROS ecosystem structured?
• RQ3: How do the foundational working groups con-

tribute to the ecosystem?
Following the methodology of [7] [8], and [9], we mined

ROS repositories and analyzed the data to answer our research
questions. We build two related corpora: (1) ROS Distribution
data (ROS Distro), which contains information on framework
packages released in the rosdistro for Kinetic, the largest and
most widely-used distribution to date7 (Section III-A), and

6https://github.com/ros/rosdistro
7https://discourse.ros.org/t/ros1-2018-version-survey-the-results-are-in/

4547

(2) ROS Client Applications (ROS Client), which draws data
from all ROS packages found on GitHub, generally consisting
of ROS Client applications built against the framework. This
dataset allows us to draw inferences about how distribution
code is used in real robotics projects.

In addition, we used the data provided by the Li-
braries.io [10] platform to compare the growth of the ROS
ecosystem against other software ecosystems, described in
Section III-C.

A. ROS Distribution

We constructed a catalog of all versions of all packages
that have ever been released in the rosdistro for the Kinetic
distribution, as well as the date and time of each release. At
the time of our data collection on June 24th 2019, 11,866
versions of 2,647 unique packages had been released in the
rosdistro over the entire history of the Kinetic distribution. On
average, each package has 4.48 released versions.

We processed all ∼60,000 commits to the rosdistro as of
June 24th 2019, seeking commits that changed the kinetic/dis-
tribution.yaml file in particular. We then extracted the commit
hash, date-time, and package metadata for each commit which
indicated the addition of a new package or the update of a
package version. Since new versions of packages overwrite
the older distribution.yaml file, this data was the first
place to explicitly capture which versions of various packages
exist and precisely when they were added.

We use package dependency as a proxy for code reuse
(and, loosely, community-level collaboration). Since we are
interested in analyzing collaboration in the ROS community,
we collect dependency relationships between packages. As
mentioned in Section II-A, ROS packages specify depen-
dencies on other packages in their package.xml file. We
mined this manifest file for every release of each package
in our dataset, collected their dependencies, and created a
directed graph, where package-versions are nodes, and
dependencies are edges. For example, foo-1.0.1 specifies
a dependency to bar-2.0.3, and as a result a directed edge
connects these two package-version nodes. We adopt the
terminology of dependency and reverse dependency used in
the literature to differentiate between incoming and outgoing
edges of the dependency graph [11].

Even though it is possible to specify a version for dependen-
cies, most packages do not; only 1.8% of dependencies in the
distribution specified a particular version of the package they
relied on. As a result, we infer dependency version based on
package release time. That is, we assumed that if package foo,
version 1.0 was created on date D, and specified a dependency
on package bar, foo likely relied on the most recently released
version of bar before time D. This reconstructs the version of
a dependency that rosinstall had access to at the time of
the package’s release.

Our collected data covers the entirety of the ROS Kinetic
distribution. For the purposes of our analysis (Section IV), we
create and analyze data snapshots every six months between
June 2016 and June 2019. Snapshots for different dates are

https://github.com/ros/rosdistro
https://discourse.ros.org/t/ros1-2018-version-survey-the-results-are-in/4547
https://discourse.ros.org/t/ros1-2018-version-survey-the-results-are-in/4547


reconstructed by querying the data set and can be created for
any point in the distribution’s history. We release both the
data and the source code to create these snapshots at https:
//doi.org/10.5281/zenodo.3997720.

B. ROS Client Applications

As described in Section II-B, packages in the rosdistro
are released to be used by other packages built against the
ROS framework. Therefore, there are many ROS projects and
packages that are developed for personal or professional use,
and are never released as part of the rosdistro.

To analyze the ROS ecosystem with a broader perspective,
and calculate popularity and dependability of ROS packages,
we mined GitHub and identified all repositories containing a
package.xml file that specifies a dependency on catkin,
the universal build system for ROS.

The search for ROS packages on GitHub resulted in 210,656
repositories. Each repository may contain multiple ROS pack-
ages. Overall, we found 230,488 ROS packages on GitHub.
Since the packages in the ROS Distribution dataset are also
hosted on GitHub, they are included in the ROS Client
dataset. However, they only constitute 1% of the dataset and
therefore can be overlooked. We also mined and analyzed
the package.xml file of every package, and collected their
dependencies in the same manner described in Section III-A.
However, we collected this information only on the latest
version of the packages since they do not have official releases.
At the end, we recorded 2,228,860 dependencies for all ROS
packages on GitHub.

C. Libraries.io

Libraries.io [10] is a platform that indexes data on dozens
of popular software package managers,8 monitors package re-
leases, and maps the dependency relationships between pack-
ages. This platform is commonly used by researchers to study
software ecosystems [11], [12]. Using the API provided by the
Libraries.io platform (version 1.6.0), we study the growth of
two software ecosystems, PyPI and Julia, as baselines against
the ROS ecosystem. We select the PyPI ecosystem since it has
been established as mature and stable [9], and Julia since it is
similar in size to the ROS ecosystem.

IV. RESULTS AND ANALYSIS

In this section, we present the results of our study in
response to our research questions.

A. RQ1: How is the ecosystem growing?

To answer this research question, we measure growth of
the ROS ecosystem in terms of its size (i.e., number of client
and distro packages) and developer membership (i.e., different
Github users that have written ROS code) over time, and
compare to other software ecosystems. Given the advanced
domain expertise required to contribute high-quality, reusable
robot software (e.g., a local planning algorithm), ROS may

8At the time of writing, Libraries.io provides data on 4,987,611 packages
from 37 package managers, which does not include ROS.

10

1000

100000

2016 2017 2018
Date

N
um

be
r 

of
 P

ac
ka

ge
s 

Ecosystem

Julia
PyPI
ROS

Fig. 3. Growth of the ROS (Kinetic), PyPI, and Julia ecosystems, in terms
of number of packages, plotted on a log scale. For each of these curves, the
most explanatory regression was linear, as opposed to exponential.

10

100

1000

10000

100000

2010 2015 2020
Date

N
um

be
r 

of
 P

ac
ka

ge
s

Group

client
distro

Fig. 4. The total number of ROS client and distro packages over time, plotted
on a log scale.

10

100

1000

10000

100000

2010 2015 2020
Date

N
um

be
r 

of
 D

ev
el

op
er

s

Group

client
distro

Fig. 5. Total number of GitHub users who have made at least one commit
to ROS Distro and ROS Client packages over time, plotted on a log scale.

have more difficulty in growing its size and membership
compared to other ecosystems of similar size. Understanding

https://doi.org/10.5281/zenodo.3997720
https://doi.org/10.5281/zenodo.3997720


this growth is vital for assessing and maintaining the long-term
health of the ecosystem, as unchecked growth or stagnation
can lead to diminished package quality, poor tool support, and
lagging management systems [11].

To understand how the ROS ecosystem is growing, we
first determine the growth in the number of packages in
the ROS distro over time relative to two other software
ecosystems, PyPI and Julia, using the methodology described
in Section III-C. Our results, shown in Figure 3, indicate that
growth in all three ecosystems has been linear since 2015. This
result indicates that the rate of growth of the ROS ecosystem
is healthy and similar to other ecosystems, albeit slower.

Another important metric of growth is the number of
software projects that make use of ROS and its associated
ecosystem. To approximate the popularity of ROS in client
applications over time, we use the GitHub API to determine
the creation date of each of the associated repositories for
the packages within the client dataset. Our results, shown in
Figure 4, show that the total number of ROS client packages is
growing exponentially, unlike the linear growth of the distro.
As of June 24, 2019, there are over 230,488 ROS packages on
GitHub. This result is indicative of a healthy ecosystem that
is continuing to attract new users and yield new applications.

Given the steady growth of both the ROS distro and client
applications, we examined whether ROS is continuing to
attract new developers at a similar rate. To approximate the
total number of ROS developers over time, we used the GitHub
API to find the date at which a contributor (identified by
Github username) made their first commit to a repository
within the client dataset. By summing the number of users
who have contributed to ROS over time, we construct an
estimate of the rate at which the ecosystem is attracting new
developers. Figure 5 shows the membership for both the ROS
distro and client applications over time. We observe that over
87,564 developers have contributed to ROS client projects
on GitHub, and that number is growing exponentially. The
number of developers contributing to the rosdistro appears to
be increasing at a linear rate, and stands at 8,538 developers
as of May 2020, an order of magnitude fewer than the number
of all ROS developers on GitHub. To determine if the number
of developers is growing proportionally with the number of
packages, we took the ratio of packages to developers over
time. We found that this ratio was between .35 (1:3) and .63
(2:3) for the distro, over the years from December 2013 to
June 2019. This result indicates that the ROS ecosystem has
been successful in attracting both new users and contributors
over time.

�

�

�

�

Key Insight: The ROS ecosystem continues to attract
new contributors and end users who use ROS for an
exponentially increasing variety of applications. How-
ever, despite the increased popularity of ROS over time,
the number of packages made available by its package
management system is growing at a much slower, linear
rate, suggesting that users are reusing existing packages
rather than creating new packages and expanding the
capabilities of ROS.

B. RQ2: How is the ROS ecosystem structured?

In this research question, we seek to gain a better under-
standing of the social structures through which individuals and
groups collaborate and contribute to the ROS ecosystem.

To do so, we first used the GitHub API to distinguish be-
tween packages within the ROS distro that are owned by users
and those that are owned by groups. In total, we identified 111
unique users and 186 unique groups that host ROS packages
for the Kinetic distro. We subsequently performed a manual
classification of the 186 groups and identified six distinct types
of group, described below.
Foundational Working Groups: Groups that are organized

around a shared area of expertise to provide the funda-
mental building blocks that are required to construct most
robots (e.g., navigation, perception, drivers). They include
both the Core Stacks that provide essential packages for
the ROS framework (i.e., “the plumbing”), and Working
Groups that offer fundamental packages.

Academic Groups: Labs and research groups affiliated with
universities or other academic institutions.

Companies: GitHub organizations that are tied to a particular
company or product.

Competition Teams: Groups created to build a robot for a
competition (e.g., RoboCup9 and the DARPA Robotics
Challenge).10

Interest Groups: Groups that are not directly affiliated with
Open Robotics, the maintainers of ROS, which typically
are focused on a particular project rather than an area of
expertise (e.g., planning).

Singletons: Packages hosted either by a single user, or by a
GitHub organization with only one contributor.

Having identified the types of contributor within the distro,
we study how their total size (i.e., number of packages) and
influence over the ecosystem (i.e., reverse dependencies) has
evolved over time, shown by Figures 6 and 7 respectively.
Note that we exclude core stacks from these figures to prevent
skewing the results since all ROS packages and applications
must rely on the core stacks. Companies have continued to
represent the largest type of organization within the ecosystem
in terms of their number of packages since 2010. Working
groups are the second largest type of organization, although

9https://www.robocup.org/
10https://www.darpa.mil/program/darpa-robotics-challenge



0

250

500

750

1000

2010 2015 2020
Date

N
um

be
r 

of
 P

ac
ka

ge
s

Organization

academic
company
interest group
singleton
team
working group

Fig. 6. The total number of packages that belong to a given type of contributor
over time.

0

5000

10000

15000

2017 2018 2019
Date

N
um

be
r 

of
 R

ev
er

se
 D

ep
en

de
nc

ie
s

Organization

academic
company
interest group
singleton
team
working group

Fig. 7. The total number of reverse dependencies on packages that belong to
a given type of contributor over time.

0

50000

100000

150000

0 2 4 6 8
Number of Non-FWG Dependencies

N
um

be
r 

of
 P

ac
ka

ge
s

Fig. 8. The number of client packages on GitHub that have dependencies
on n packages that are provided by a group or individual other than a
foundational working group. Approximately 82% of client packages have zero
dependencies on non-FWG packages.

their growth has been stagnant since 2017. Despite being

90.6%

9.4%

88.1%

11.9%

84.2%

15.8%

84.3%

15.7%

83.9%

16.1%

83.5%

16.5%

83%

17%

0.00

0.25

0.50

0.75

1.00

2016-06 2016-12 2017-06 2017-12 2018-06 2018-12 2019-06
Date

P
er

ce
nt

ag
e 

of
 D

ep
en

de
nc

ie
s

organization
inter
intra

Fig. 9. A breakdown of the source of dependencies on packages other than
those produced by foundational working groups. Illustrates the percentage of
such dependencies that are on packages from the same organization (intra),
versus those from other organizations (inter).

the second-largest type of organization, working groups are
acquiring dependent packages (reverse dependencies) at nearly
twice the rate (1.8X) as the next-fastest-growing group. For
the entire history of the ROS ecosystem, working groups have
had more reverse dependencies than the sum total of all other
entities (core stacks excluded).

Upon closer inspection of client applications on GitHub,
we find that 82% of those applications rely exclusively on
packages from the foundational working groups (FWGs), and
99% of Client applications have five or fewer non-FWG
dependencies, as shown in Figure 8. Although it is common for
software ecosystems to rely heavily on a core set of packages,
[7], [13], [14], it is surprising that so many ROS Client
applications exclusively rely on the FWGs. These groups are
established organizations focused on providing the essential
functionality of a robot (e.g., navigation, perception, hardware
drivers). By exclusively relying on packages produced by
FWGs, Clients are neglecting all other types of packages
contributed to the ecosystem.

As the ecosystem grows, we would expect that a smaller
percentage of packages exclusively rely on core groups, as
higher-level libraries and APIs extract their functionality.
Figure 11 shows that the opposite is occurring: over time,
a greater fraction of packages in the distro are only relying
on the FWGs. This means that packages produced by the
other organizations (academic, company, interest group, etc.)
are continually getting less use.

While FWGs make up approximately 80% of reverse depen-
dencies, there is still collaboration in the ecosystem that does
not involve them. To better understand collaboration between
other groups in the ecosystem, we examined dependencies on
packages other than those produced by FWGs. Specifically, we
classified dependencies as either intra-organizational, if the
packages are hosted by the same GitHub user or organization,
or inter-organizational if not. Figure 9 shows how the balance
of inter and intra-organizational dependencies has evolved over



time. We find that the vast majority of non-FWG dependencies
are on packages produced by the same organization, indicating
limited collaboration between the “satellite” groups that make
up the rest of the ecosystem. However, we do also observe
that the proportion of inter-organizational dependencies is
increasing albeit slowly.�

�

�

�

Key Insight: Individuals and organizations within the
ROS ecosystem revolve around a small number of
highly influential FWGs, which account for over 80%
of reverse dependencies. Relatively little collaboration
takes place between the distinct individuals and orga-
nizations, and most packages depend exclusively on
functionality provided by the FWGs.

C. RQ3: How do the foundational working groups contribute
to the ecosystem?

Having identified the importance of ROS’s foundational
working groups, in this question we take a closer look at
their responsibilities, health, and relationship to the rest of
the ecosystem.

Figure 10 lists each of these foundational working groups
and describes their responsibilities. Collectively, the packages
provided by these foundational working groups provide the
essential building blocks that are required to construct a
robot. With the exception of ROS, which composes the core
stacks and provides the “plumbing” for ROS itself, each
group is organized around a particular area of expertise (e.g.,
perception). This means of structuring collaboration shows
how ROS has tackled the considerable difficulties of writing
high-quality, general-purpose robotics software by means of
divide and conquer: The foundational working groups allow
the relatively limited population of developers that possess
the specialist knowledge and skills in a particular subarea of
robotics (e.g., planning) to more easily find one another and
collaborate, rather than attempting to tackle that subproblem
alone. Historically, most these groups trace their roots back to
ROS’s “Special Interest Groups”, designed to bring together
developers with a shared interest in a particular topic.11�

�

�

�

Key Insight: The ROS ecosystem exhibits an extraor-
dinary level of structure and cooperation, facilitated
by its expertise-focused foundational working groups,
that is rarely seen in other software ecosystems where
multiple competing implementations are the norm; ROS
developers have chosen to work together towards a
common goal rather than compete.

Given the considerable influence of FWGs, we examine the
extent to which each of these group has been able to attract
new contributors and official members over time. Figure 12

11https://wiki.ros.org/sig

shows the number of official members for each of the corre-
sponding GitHub organizations of each FWG over time. We
observe that new membership has slowed over the past few
years, and only one new developer has been added to a FWG
since the start of 2020. Other groups, such as ros-simulation,
have not recruited new members since September 2013. The
plateauing membership of FWGs may have long-term health
implications for the ecosystem as a whole. Presently, the
largest FWG has 25 official members, meaning that a small
number of people are responsible for maintaining a large
portion of the most critical software in ROS.

To account for development in the FWGs by users that are
not official maintainers, we looked at the the number of active
contributors for each of the FWGs over time, as measured by
the number of GitHub users that made at least one commit
during a given three-month period, shown in Figure 13. We
observe a spike in the number of active contributors at around
the end of 2012, which coincides with the release of the ROS
Groovy distribution. Since that point, the number of active
contributors has fluctuated but remains quasistatic and does
not suggest continued growth: The greatest number of active
contributors in a given three-month period occurred in the final
quarter of 2013.

The influence of FWGs over the ecosystem as a whole
suggests that they are stable and functioning well, but as ROS
attracts more developers, FWGs risk becoming a bottleneck
that leads to stagnation within the ecosystem. Furthermore,
having so much of the ecosystem rely on a small number of
individuals is generally bad for ecosystem health [17], and is
exasperated over long periods of time as key developers are
more likely to stop contributing [18].�

�

�




Key Insight: The number of people maintaining and
contributing to ROS’s foundational working groups has
increased little over the last few years. Given the con-
siderable influence of foundational working groups, this
result may ultimately limit the growth of the ecosystem.

V. DISCUSSION

Our analysis of the ROS ecosystem shows that, despite the
considerable challenges of building robotics software (e.g.,
the need for significant expertise in several domains), ROS
has been highly successful in attracting developers and end
users, and its growth over time is comparable to software
ecosystems of a similar age. The results of our study show
that the unique structure and nature of collaboration within the
ROS ecosystem, embodied by its foundational working groups,
is at the root of this success. In this section, we further explore
this unique form of collaboration and its potential implications
for the future of the ecosystem.

Whereas in most software ecosystems, different groups
compete to offer multiple implementations of the same func-
tionality, the ROS ecosystem demonstrates an extraordinary
level of cooperation on a single set of implementations through



Working Group Pkgs. Client Distro Members Responsibilities

ros (a.k.a., Core Stacks) 159 1,543,515 65,847 25 build system, client libraries, geometry, file parsers
ros-drivers 97 21,136 933 19 hardware device drivers
ros-perception 52 110,578 4,010 12 object detection, image processing, computer vision
ros-controls 29 31,626 2,693 8 generic robot controllers, control frameworks
ros-simulation 7 24,990 771 9 ROS interfaces for Gazebo [15] and Stage [16] simulators
ros-planning 70 71,864 4,022 18 navigation, local and global planning, motion planning
ros-visualization 58 20,870 3,067 15 tools for visual debugging
ros-geographic-info 10 1,124 249 6 common interface for mapping and coordinate conversions
ros-infrastructure 1 107 13 3 hosts the ROS distro, build farm, and official website

Fig. 10. An overview of the working groups that provide the foundations of ROS, and a description of their associated responsibilities. Pkgs. is the number
of packages provided by a working group. Client is the number of reverse dependencies from client packages. Distro is the number of reverse dependencies
from distro packages. Members is the number of public GitHub organization members for that working group.

2016-06 2017-12 2019-06

0 10 20 30 0 10 20 30 0 10 20 30

0.00

0.05

0.10

0.15

0.20

Number of Non-FWG Dependencies

P
er

ce
nt

ag
e 

of
 P

ac
ka

ge
s

Fig. 11. A density plot showing the fraction of ROS distro packages that rely
only on the FWGs over time. Observe that an increasing majority of packages
do not depend on any non-FWG packages.

0

5

10

15

20

25

2010 2015 2020
Date

N
um

be
r 

of
 D

ev
el

op
er

s

Organization

ros
ros−controls
ros−drivers
ros−geographic−info
ros−perception
ros−planning
ros−simulation
ros−visualization

Fig. 12. The number of official GitHub organization members for each of
the foundational working groups over time.

its foundational working groups. Each of these groups is com-
posed of a relatively small number of experts in a particular
subdomain of robotics, and produces software that is used
widely throughout the ecosystem. Indeed, ROS was designed
from the ground up to encourage collaborative robotics soft-

0

100

200

300

400

20
09

−
03

20
09

−
06

20
09

−
09

20
09

−
12

20
10

−
03

20
10

−
06

20
10

−
09

20
10

−
12

20
11

−
03

20
11

−
06

20
11

−
09

20
11

−
12

20
12

−
03

20
12

−
06

20
12

−
09

20
12

−
12

20
13

−
03

20
13

−
06

20
13

−
09

20
13

−
12

20
14

−
03

20
14

−
06

20
14

−
09

20
14

−
12

20
15

−
03

20
15

−
06

20
15

−
09

20
15

−
12

20
16

−
03

20
16

−
06

20
16

−
09

20
16

−
12

20
17

−
03

20
17

−
06

20
17

−
09

20
17

−
12

20
18

−
03

20
18

−
06

20
18

−
09

20
18

−
12

20
19

−
03

20
19

−
06

20
19

−
09

20
19

−
12

20
20

−
03

20
20

−
06

Three Month Period

N
um

be
r 

of
 A

ct
iv

e 
C

on
tr

ib
ut

or
s

Fig. 13. The number of GitHub users who have made at least one commit
to a repository belonging to a foundational working group during a given
three-month period.

ware development: For instance, experts in a particular area
of robotics (e.g., perception) can collaborate to produce high-
quality software that can be reused by others as the building
blocks of their own systems [1].

The unique, highly cooperative nature of the ROS ecosystem
may help to explain its success during its early stages: by
working together to tackle the considerable challenges of writ-
ing robust, general-purpose robotics software, developers may
avoid duplicating difficult work and instead focus on building
something that works and can be used by others sooner. In
turn, this may lead to more users and organizations adopting
that code, which ensures the survival of the ecosystem.

However, the factors behind the early success of ROS
may unintentionally lead to long-term health problems for its
ecosystem. In this study, we observe that FWGs account for
the majority of reverse dependencies in the ecosystem, and
over 80% of ROS code on GitHub does not use functionality
beyond that provided by FWGs. Packages developed by orga-
nizations or individuals other than those in Figure 10 are rarely
successful in convincing others to rely on their packages.
When these other packages do gain reverse dependencies,



they are almost always from other packages within the same
organization. Explaining the reasons behind such behavior is
beyond the scope of this study, however, releasing packages
with very specific functionality, low reliability, and limited
documentation could be among the reasons.

The problems caused by a heavy reliance on FWGs may
be exacerbated by the limited number of maintainers and
active contributors to those groups, and their slow growth
in membership over time [19], [20]. That few developers are
responsible for maintaining the most crucial packages makes
the ecosystem susceptible to knowledge loss and stagnation.
The slow recruitment could be attributed to the required
domain expertise, or it may simply be a result of the difficulties
of adding new maintainers to open source organizations due
to the inherent overhead of communication and coordination.

The ROS framework is at a pivotal point of transitioning
to its second major version, ROS2. This transition affords
the opportunity to review the positive and negative aspects
of the ROS ecosystem, and adopt policies and ideas that
ensure it continues to grow as it enters the next stage of
its development. To facilitate continued innovation and avoid
stagnation, the ROS ecosystem needs to solve the challenge
of encouraging greater collaboration, reuse, and code sharing
outside of its FWGs. For instance, an improved package
distribution can simplify the process of releasing packages
to the ecosystem, and make the ecosystem more resistant
towards release mistakes. A better search mechanism in the
package manager can make it easier for the developers to find
and reuse packages most suitable for their needs. Ultimately,
introducing tools and methods that simplify the release process
while providing some sort of assurance of the quality of the
packages, and making it easier to search for packages in
the ecosystem can encourage more collaboration among ROS
developers outside of the FWGs, which is beneficial to the
health of the ecosystem.

VI. RELATED WORK

In a recent study most closely related to ours, Pichler
et al. study the interdependencies between ROS packages
on GitHub, BitBucket, and the rosdistro, and how quality
propagates through the dependency network [4]. Our study
is different in (1) the number of ROS packages collected
from GitHub (more than 230,000 compared to less than
7,500), (2) our handling dependency versions and collecting of
historical data, which supports creation of ecosystem snapshots
of the ecosystem for any point of time, and, critically (3) the
focus of study. Our study focuses on the ecosystem structure,
collaboration, code reuse, and ecosystem health, while Pichler
et al. focus on the quality of the ecosystem.

In an empirical study consisting of interviews and a survey
with ROS developers, Estefo et al. investigated the difficulties
that ROS users encounter when reusing ROS packages, main
contribution bottlenecks in ROS ecosystem [21]. They report
that 74% of the survey participants that tried to reuse a third-
party ROS package failed to do so for various reasons includ-
ing packages developed for an outdated ROS distribution, lack

of documentation, and difficulty configuring for a particular
use case. In a separate, prior study, Estefo et al. study code
duplication in ROS packages [22]. Specifically, they focus
their attention on the duplication of launch files and XML
configuration files that are used as part of the application
launch process. They show that 25% of all packages that
contain more than one launch file contain code clones.

Alami et al. conduct a qualitative study to better understand
quality assurance practices within the ROS community [5].
They find that the implementation and execution of QA
practices in the ROS community are influenced by social
and cultural factors and are constrained by sustainability and
complexity. In a talk, the ROSIN group reported that by
conducting intensive interviews with members of the ROS
community, and analyzing 177 reported ROS bugs, they found
that one-third of the ROS bugs are dependency errors [23].

Santos et al. performed various static analyses to measure
code and process metrics for the GitHub repositories asso-
ciated with 180 C++-based ROS packages [24]. They find
that applications and drivers tend to have more developers,
commits, and raised issues than library code.

Curran et al. develop a series of tools for ROS that can be
used to measure the impact and health of individual nodes,
packages, and contributors within the ROS ecosystem, and
to dynamically determine the nodes and packages from the
ecosystem that are being actively used by the community [25].
Repository health is computed using 13 metrics that cover
aspects of the repository such as its size, number of subscribers
and watchers, and the state of its issue tracker.

Prior studies have also investigated the health and survival of
open source projects in general [9], [26], [27]. Samoladas et al.
show that open source projects that existed more than 10 years
ago continue to evolve, and every new programmer added
in a project increases project’s survivability by 15.8% [26].
Coelho et al. explore the reasons that popular open-source
projects fail by conducting a survey of the maintainers of 104
popular-but-now-deprecated GitHub projects [27]. Valiev et al.
find that packages with few reverse dependencies are more
likely to become dormant over time, and to ultimately become
abandoned [9].

Decan et al. compare three programming language ecosys-
tems (Python’s PyPI, R’s CRAN, and JavaScript’s NPM), and
identified the differences in their structure [28]. They found
most PyPI packages to be isolated in the dependency graph
because they only depend on the rather extensive standard
library of Python, similar to our finding about ROS ecosystem.
In a separate prior work, Decan et al. carry out a quantitative
empirical analysis of the similarities and differences between
the evolution of seven packaging ecosystems (ROS not in-
cluded) [11]. Similar to our findings about ROS, they observe
that the dependency networks of software ecosystems tend to
grow over time, only a small proportion of packages account
for most of the reverse dependencies.

Our study and analysis of the ROS ecosystem is similar
in nature to many prior studies performed on other software
ecosystems [7]–[9], [13], [14], [29]. Valiev et al. used his-



torical data from 46,547 projects in the PyPI12 ecosystem,
and showed that the number of project ties and the relative
position in the dependency network have significant impact
on sustained project activity [9].

Wittern et al. studied the evolution of the NPM13 ecosystem
between 2011 and 2015 [7]. Their study includes 185,005
core packages and 114,995 client applications collected from
GitHub. They show that the number of packages having one
or more dependencies increased from 23.4% in 2011 to 81.3%
in 2015. In addition, in 2015, 72.5% of packages had no
reverse dependency, while only 4.9% of packages had 6 or
more dependents.

German et al. conduct a comparative study of core and
user packages in the CRAN R ecosystem, a popular statis-
tical computing project [8]. The authors studied 207 core
packages and 2,733 user-contributed packages. They find that
user-contributed packages tend to be smaller and have less
documentation than core packages. They find that packages
typically have few dependencies, and that user-contributed
packages depend on more core packages than other user-
contributed packages. Similarly Plakidas et al. study the
evolution of R ecosystem, and analyze 8,941 packages on
CRAN [14]. They find that 54% of packages on CRAN have
dependencies and 22.8% have reverse dependencies.

VII. THREATS TO VALIDITY

Internal: Did we skew the accuracy of our results with how
we collected and analyzed information? To avoid skewing our
results, we collected all the ROS projects on GitHub that we
could find. However, we did not include packages with only
a documentation link, and no code. There were also a total
of 106 projects which we could not clone due to naming
errors, so we excluded those from our dataset. Additionally,
some projects in the ROS client dataset may have been clones
or student projects—inflating the number of packages relying
exclusively on the FWGs. Lastly, since ROS is one of few
open-source robotics frameworks, we compared its evolution
against Julia and PyPI, although ROS is much more domain
specific. The libraries.io datset we used for this comparison
was collected externally. Therefore, any errors in their data
collection on PyPI and Julia would also be reflected in our
results.
External: Do our results generalize? To enable our results to
generalize as much as possible, we look at ROS projects on
GitHub, so that our sample is as varied as possible. All of
our projects are open source, so we cannot make claims about
how our results may generalize to proprietary projects.
Replicability: Can others replicate our results? To support
others replicating our results, we make our data publicly
available: https://doi.org/10.5281/zenodo.3997720.

VIII. CONCLUSION

In this work, we studied how the ROS ecosystem has grown
over time, and how its members collaborate to build robot

12https://pypi.org/
13https://www.npmjs.com

software. Our results show that ROS has been successful in
tackling the inherent challenges of building robotics software,
and is continuing to attract new applications, developers, and
end users. However, we also observe that number of packages
released on the ROS package manager is growing at a much
slower rate.

We studied the structure of the ROS ecosystem by identi-
fying its types of contributor, and analyzing the dependencies
between packages. We found that a small number of groups,
which we term foundational working groups, account for 80%
of all dependencies in the ROS ecosystem, and the majority
(82%) of ROS applications exclusively rely on packages re-
leased by these groups.

We further examined collaboration within these founda-
tional working groups. We observe that these groups are
highly structured and facilitate a unique form of collaboration
and cooperation between between domain experts working on
particular robotics subproblems. While this extraordinary level
of cooperation may account for some of the early success of
ROS, we also observe that membership of these groups has
remained relatively stagnant in recent years, which may have
long-term health implications for the ecosystem. We briefly
outline and discuss how ROS can tackle these challenges and
continue to be successful as it transitions to its next major
release, ROS2.

ACKNOWLEDGMENT

This research was partially supported by AFRL (#FA8750-
15-2-0075), DARPA (#FA8750-16-2-0042), and the NSF
(#CCF-1750116 and #CCF-1929249); the authors are grateful
for their support. Any opinions, findings, or recommendations
expressed are those of the authors and do not necessarily
reflect those of the US Government.

REFERENCES

[1] “About ROS,” https://www.ros.org/about-ros/, accessed: 2020-01-16.
[2] “The origin story of ROS, the linux of robotics,”

https://spectrum.ieee.org/automaton/robotics/robotics-software/
the-origin-story-of-ros-the-linux-of-robotics, accessed: 2020-01-16.

[3] “Results 2020 user survey,” https://discourse.ros.org/t/
results-2020-user-survey/13494, accessed: 2020-05-28.

[4] M. Pichler, B. Dieber, and M. Pinzger, “Can i depend on you? mapping
the dependency and quality landscape of ros packages,” in International
Conference on Robotic Computing. IEEE, 2019, pp. 78–85.

[5] A. Alami, Y. Dittrich, and A. Wasowski, “Influencers of quality as-
surance in an open source community,” in International Workshop on
Cooperative and Human Aspects of Software Engineering, ser. CHASE
’18, May 2018, pp. 61–68.

[6] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA workshop on open source software, vol. 3, no. 3.2. Kobe, Japan,
2009, p. 5.

[7] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of the
javascript package ecosystem,” in 13th Working Conference on Mining
Software Repositories, ser. MSR ’16, May 2016, pp. 351–361.

[8] D. M. German, B. Adams, and A. E. Hassan, “The evolution of the r
software ecosystem,” in European Conference on Software Maintenance
and Reengineering, March 2013, pp. 243–252.

[9] M. Valiev, B. Vasilescu, and J. Herbsleb, “Ecosystem-level determinants
of sustained activity in open-source projects: A case study of the
pypi ecosystem,” in Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE ’18, 2018, p. 644–655.

https://doi.org/10.5281/zenodo.3997720
https://pypi.org/
https:// www.npmjs.com
https://www.ros.org/about-ros/
https://spectrum.ieee.org/automaton/robotics/robotics-software/the-origin-story-of-ros-the-linux-of-robotics
https://spectrum.ieee.org/automaton/robotics/robotics-software/the-origin-story-of-ros-the-linux-of-robotics
https://discourse.ros.org/t/results-2020-user-survey/13494
https://discourse.ros.org/t/results-2020-user-survey/13494


[10] A. Nesbitt and B. Nickolls, “Libraries.io open source repository and
dependency metadata,” 2017.

[11] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of
dependency network evolution in seven software packaging ecosystems,”
Empirical Software Engineering, vol. 24, no. 1, pp. 381–416, Feb 2019.

[12] A. Decan, T. Mens, and E. Constantinou, “On the impact of security vul-
nerabilities in the npm package dependency network,” in International
Conference on Mining Software Repositories, ser. MSR ’18, 2018, pp.
181–191.

[13] J. Kabbedijk and S. Jansen, “Steering insight: An exploration of the
ruby software ecosystem,” in Software Business, B. Regnell, I. van de
Weerd, and O. De Troyer, Eds. Springer Berlin Heidelberg, 2011, pp.
44–55.

[14] K. Plakidas, S. Stevanetic, D. Schall, T. B. Ionescu, and U. Zdun,
“How do software ecosystems evolve? a quantitative assessment of
the r ecosystem.” in International Systems and Software Product Line
Conference, ser. SPLC ’16, 2016, p. 89–98.

[15] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in International Conference on
Intelligent Robots and Systems, ser. IROS ’04, vol. 3, 2004, pp. 2149–
2154.

[16] R. Vaughan, “Massively multi-robot simulation in Stage,” Swarm Intel-
ligence, vol. 2, no. 2-4, pp. 189–208, 2008.

[17] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, “Assessing the bus factor
of git repositories,” in 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER). IEEE, 2015,
pp. 499–503.

[18] A. Capiluppi, M. Morisio, and J. F. Ramil, “Structural evolution of
an open source system: a case study,” in Proceedings. 12th IEEE
International Workshop on Program Comprehension, 2004., 2004, pp.
172–182.

[19] M. Nassif and M. P. Robillard, “Revisiting turnover-induced knowledge
loss in software projects,” in International Conference on Software
Maintenance and Evolution, ser. ICSME’17. IEEE, 2017, pp. 261–
272.

[20] P. C. Rigby, Y. C. Zhu, S. M. Donadelli, and A. Mockus, “Quantifying
and mitigating turnover-induced knowledge loss: case studies of chrome
and a project at avaya,” in International Conference on Software
Engineering, ser. ICSE’16. IEEE, 2016, pp. 1006–1016.

[21] P. Estefo, J. Simmonds, R. Robbes, and J. Fabry, “The robot operating
system: Package reuse and community dynamics,” Journal of Systems
and Software, vol. 151, pp. 226 – 242, 2019.

[22] P. Estefo, R. Robbes, and J. Fabry, “Code duplication in ros launchfiles,”
in International Conference of the Chilean Computer Science Society,
ser. SCCC ’15, Nov 2015, pp. 1–6.

[23] Y. Dittrich, G. van der Hoorn, and A. Wasowski, “How ROS
cares for quality,” 2017, ROSCon. [Online]. Available: https:
//roscon.ros.org/2017/

[24] A. Santos, A. Cunha, N. Macedo, and C. Lourenço, “A framework for
quality assessment of ros repositories,” in International Conference on
Intelligent Robots and Systems, ser. IROS ’16, Oct 2016, pp. 4491–4496.

[25] W. Curran, T. Thornton, B. Arvey, and W. D. Smart, “Evaluating
impact in the ros ecosystem,” International Conference on Robotics and
Automation, pp. 6213–6219, 2015.

[26] I. Samoladas, L. Angelis, and I. Stamelos, “Survival analysis on the
duration of open source projects,” Information and Software Technology,
vol. 52, no. 9, p. 902–922, Sep. 2010.

[27] J. Coelho and M. T. Valente, “Why modern open source projects fail,” in
Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE
’17, 2017, p. 186–196.

[28] A. Decan, T. Mens, and M. Claes, “On the topology of package
dependency networks: A comparison of three programming language
ecosystems,” in European Conference on Software Architecture Work-
shops, ser. ECSAW ’16, 2016.

[29] E. Constantinou and T. Mens, “Socio-technical evolution of the ruby
ecosystem in github,” in International Conference on Software Analysis,
Evolution and Reengineering, ser. SANER ’17, Feb 2017, pp. 34–44.

https://roscon.ros.org/2017/
https://roscon.ros.org/2017/

	Introduction
	Background
	Package structure
	Package distributions

	Methodology
	ROS Distribution
	ROS Client Applications
	Libraries.io

	Results and Analysis
	RQ1: How is the ecosystem growing?
	RQ2: How is the ROS ecosystem structured?
	RQ3: How do the foundational working groups contribute to the ecosystem?

	Discussion
	Related Work
	Threats To Validity
	Conclusion
	References

