Industry’s Cry for Tools that Support Large-Scale Refactoring

James Ivers
jivers@sei.cmu.edu
CMU Software Engineering Institute
Pittsburgh, PA, USA

Chris Seifried

cgseifried@sei.cmu.edu
CMU Software Engineering Institute
Pittsburgh, PA, USA

ABSTRACT

Software refactoring plays an important role in software engineer-
ing. Developers often turn to refactoring when they want to restruc-
ture software to improve its quality without changing its external
behavior. Compared to small-scale (floss) refactoring, many refac-
toring efforts are much larger, requiring entire teams and months
of effort, and the role of tools in these efforts is not as well studied.
This short paper introduces an industry survey that we conducted.
Results from 107 developers demonstrate that projects commonly
go through multiple large-scale refactorings, each of which re-
quires considerable effort. While there is often a desire to refactor,
other business concerns such as developing new features often
take higher priority. Our study finds that developers use several
categories of tools to support large-scale refactoring and rely more
heavily on general-purpose tools like IDEs than on tools designed
specifically to support refactoring. Tool support varies across the
different activities (spanning communication, reasoning, and tech-
nical activities), with some particularly challenging activities seeing
little use of tools in practice. Our study demonstrates a clear need
for better large-scale refactoring tools.

CCS CONCEPTS

« Software and its engineering — Software evolution; Main-
taining software; Software maintenance tools; Development
frameworks and environments.

KEYWORDS

refactoring, refactoring tools, software automation, software evolu-
tion

ACM Reference Format:

James Ivers, Robert L. Nord, Ipek Ozkaya, Chris Seifried, Christopher S.
Timperley, and Marouane Kessentini. 2022. Industry’s Cry for Tools that
Support Large-Scale Refactoring. In 44nd International Conference on Soft-
ware Engineering: Software Engineering in Practice (ICSE-SEIP °22), May
21-29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3510457.3513074

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE-SEIP *22, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9226-6/22/05.

https://doi.org/10.1145/3510457.3513074

Robert L. Nord
rn@sei.cmu.edu
CMU Software Engineering Institute
Pittsburgh, PA, USA

Christopher S. Timperley
ctimperley@cmu.edu
Carnegie Mellon University
Pittsburgh, PA, USA

Ipek Ozkaya
ozkaya@sei.cmu.edu
CMU Software Engineering Institute
Pittsburgh, PA, USA

Marouane Kessentini
kessentini@oakland.edu
Oakland University
Rochester, MI, USA

1 INTRODUCTION

Refactoring is defined as restructuring software to improve its
quality without altering its external behavior [5]. The need to re-
structure software can come from such diverse goals as improving
software quality, migrating to new platforms like cloud, container-
izing software for DevOps, incorporating new technologies, or
extracting capabilities for strategic reuse. Many of these scenarios
involve refactoring at a large scale and imply broad changes to the
system that cannot be accomplished through local code changes.
This paper focuses on these larger refactoring efforts, which we
refer to as large-scale refactoring and is the first study of large
refactoring efforts from multiple industry organizations.

Large-scale refactoring involves either pervasive changes across
a codebase or extensive changes to a substantial element of the
system (e.g., greater than 10k LOC) and often involves a substantial
commitment of resources, requiring management approval. One
example is the need to partition legacy monoliths into smaller
pieces to create separately deployable, scalable, and evolvable units.
Another is restructuring interfaces and communication patterns
to enable replacement of a legacy feature by an improved or less
proprietary alternative.

Murphy-Hill and Black [4] introduced two different notions of
refactoring: the need to continually tweak code while making other
changes (floss refactoring) and infrequent, but focused changes
to improve unhealthy code (root-canal refactoring). Developers
have common access to tool support in integrated development
environments (IDEs) that supports floss refactoring, but studies
have shown that many developers do not trust these features [3, 4].
Large-scale refactoring is more closely related to root-canal refac-
toring in that both focus on structural improvements that are not
intermingled with other changes. However, we distinguish it from
the common use of root-canal refactoring in scale and motivation.
Many examples of root-canal refactorings in the literature focus
on system wide code quality improvements and do not represent
efforts that require significant commitment of resources.

To understand how developers engage with large-scale refactor-
ing and how they use tools to support different activities involved,
we conducted a developer survey. A total of 107 participants took
part in the survey, the majority of whom work in industry and have
10+ years of experience. The survey elicited responses on topics
that include how common large-scale refactoring is in practice,
why it is and is not performed, what challenges developers face in


https://doi.org/10.1145/3510457.3513074
https://doi.org/10.1145/3510457.3513074
https://doi.org/10.1145/3510457.3513074

ICSE-SEIP °22, May 21-29, 2022, Pittsburgh, PA, USA

performing large-scale refactoring, and what tools developers have
used in their refactoring efforts [1].

2 IMPLICATIONS FOR INDUSTRY

Industry software goes through periodic structural changes as part
of continuous evolution [2]. While intuitively we know that refac-
torings support these changes, we also know that these efforts are
significantly larger in scale than the kinds of changes common in
floss refactoring and so may have different implications on desirable
tool support.

Large-scale refactoring is a distinct activity for which significant
resources need to be allocated, rather than being something that
developers can easily weave into their day-to-day work. It includes
communication activities like persuading stakeholders of benefits
and managing expectations; reasoning activities that span under-
standing code, requirements, and intent; and technical activities like
integrating data from and capabilities of different tools to realize
desired changes. In short, it is reasonable to think of large-scale as
having a project-like scope that includes building blocks like those
of floss refactoring, but that also includes many others.

We captured data for refactoring efforts that were estimated
to require a mean of more than 1500 staff days of effort. These
refactoring efforts were often motivated by broader business con-
cerns than quality improvement. Moreover, the need for large-scale
refactoring is relatively common, with most developers having con-
ducted large-scale refactoring multiple times in addition to having
to forego desired large-scale refactoring.

As part of our study, we sought to understand whether the kinds
of tools used in large-scale refactoring differ from those used in
other refactoring efforts, the different activities involved in refac-
toring, and how the tools being used support those activities. Our
findings confirm existing research on the challenges of smaller-
scale (floss) refactoring activities. However, our results demonstrate
that when it comes to tools used to perform large-scale refactor-
ing, developers use several categories of tools beyond those that
implement refactorings in code.

Tool support varies across the different activities that are in-
volved in large-scale refactoring, with some particularly challeng-
ing activities seeing little use of tools in practice. The broad range
of tools offered by the respondents go beyond IDEs, including di-
verse tools such as static code analyzers, issue trackers and wikis,
testing tools, and custom scripts. References to custom scripts were
significantly more common for large-scale refactoring, suggesting
significant tool gaps that are more apparent at scale. While devel-
opers broadly agree that better tools are desired, they vary in the
activities and degree of intelligence they want in tools.

Responses included several doubts about the feasibility of tool
support for large-scale refactoring. A key challenge in developing
tools that support large-scale refactoring is improving our under-
standing of what motivates such activities. Tools for smaller scale
refactoring often start with an assumption that the goal is to re-
move specific code smells or improve specific code quality metrics.
While these improvements offer business value in the form of im-
proved software maintainability and developer productivity, these
improvements are not always what motivates businesses to invest
and hence may be misaligned with project needs. Tools that address

Ivers, et al.

different motivations or allow users to express their improvement
goals could provide more options for developers.

Our results, similar to those of other studies [6], show that factors
such as unclear value, risk of new errors, or resource constraints
influence decisions about whether to perform large-scale refactor-
ing. Our respondents reported that prioritizing new features over
refactoring and perceiving the cost of refactoring as too high were
both the most common and most important reasons that their orga-
nizations decided to forgo refactoring. These are familiar rationales
to developers in industry.

However, while prioritizing new features over refactoring was
the most common reason for forgoing large-scale refactoring, the
majority of respondents reported the inability or slowing pace of
delivering features as a consequence of forgoing refactoring.

Better tools can help change these business decisions and avoid
the consequences that follow. As most of the reasons provided boil
down to cost-benefit decisions, tools that reduce cost can shift the
balance. A mean of more than 1500 staff days of effort spent on
large-scale refactorings suggests many opportunities to reduce the
work involved in refactoring activities. While the common wisdom
is to focus research on floss refactoring because it is more com-
mon (orders of magnitude more so), this perspective neglects the
cost difference (large-scale refactorings being orders of magnitude
larger).

Our study demonstrates a clear need for better tools and an
opportunity for refactoring researchers to make a difference in
industry. More detailed discussion of the analysis and results are
described at Ivers et. al [1].

ACKNOWLEDGMENTS

This material is based upon work funded and supported by the
Department of Defense under Contract No. FA8702-15-D-0002 with
Carnegie Mellon University for the operation of the Software En-
gineering Institute, a federally funded research and development
center. References herein to any specific commercial product, pro-
cess, or service by trade name, trade mark, manufacturer, or oth-
erwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by Carnegie Mellon University or its
Software Engineering Institute. DM22-0072

REFERENCES

[1] James Ivers, Robert L. Nord, Ipek Ozkaya, Chris Seifried, Christopher S. Tim-
perley, and Marouane Kessentini. 2022. Industry Experiences with Large-Scale
Refactoring. (2022). arXiv:2202.00173

[2] James Ivers, Ipek Ozkaya, Robert L. Nord, and Chris Seifried. 2020. Next Generation
Automated Software Evolution Refactoring at Scale. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2020). Association for Computing
Machinery, New York, NY, USA, 1521-1524.

[3] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2014. An em-
pirical study of refactoring challenges and benefits at Microsoft. IEEE Transactions
on Software Engineering 40, 7 (2014), 633-649.

[4] Emerson Murphy-Hill and Andrew P. Black. 2008. Refactoring Tools: Fitness for
Purpose. IEEE Software 25, 5 (2008), 38—44.

[5] William F Opdyke. 1992. Refactoring object-oriented frameworks. (1992).

[6] Ewan Tempero, Tony Gorschek, and Lefteris Angelis. 2017. Barriers to Refactoring.
Commun. ACM 60, 10 (Sept. 2017), 54-61.


https://arxiv.org/abs/2202.00173

	Abstract
	1 Introduction
	2 Implications for Industry
	Acknowledgments
	References

