
Usability-Oriented Design of Liquid Types for Java
Catarina Gamboa , Paulo Canelas , Christopher Timperley and Alcides Fonseca

School of Computer Science, Carnegie Mellon University, USA
LASIGE, Faculdade de Ciências da Universidade de Lisboa, Portugal

Email: {cgamboa, pasantos, ctimperl} @andrew.cmu.edu, amfonseca@fc.ul.pt

Abstract—Developers want to detect bugs as early in the
development lifecycle as possible, as the effort and cost to fix
them increases with the incremental development of features.
Ultimately, bugs that are only found in production can have
catastrophic consequences.

Type systems are effective at detecting many classes of bugs
during development, often providing immediate feedback both
at compile-time and while typing due to editor integration.
Unfortunately, more powerful static and dynamic analysis tools
do not have the same success due to providing false positives, not
being immediate, or not being integrated into the language.

Liquid Types extend the language type system with predicates,
augmenting the classes of bugs that the compiler or IDE can catch
compared to the simpler type systems available in mainstream
programming languages. However, previous implementations
of Liquid Types have not used human-centered methods for
designing or evaluating their extensions. Therefore, this paper
investigates how Liquid Types can be integrated into a mainstream
programming language, Java, by proposing a new design that
aims to lower the barriers to entry and adapts to problems
that Java developers commonly encounter at runtime. Following
a participatory design methodology, we conducted a developer
survey to design the syntax of LiquidJava, our prototype.

To evaluate if the added effort to writing Liquid Types in Java
would convince users to adopt them, we conducted a user study
with 30 Java developers. The results show that LiquidJava helped
users detect and fix more bugs and that Liquid Types are easy to
interpret and learn with few resources. At the end of the study, all
users reported interest in adopting LiquidJava for their projects.

Index Terms—Usability, Java, Refinement Types, Liquid Types

I. INTRODUCTION

Software quality is a major concern throughout software
development [1]. Given the increased costs of finding and
addressing bugs later in the development lifecycle, developers
and organizations aim to identify issues as early as possible
when they are cheaper and easier to address (“shifting left” [2]).

Strong type systems are present in many modern program-
ming languages (e.g., Java, C#, Haskell), allowing developers to
specify the expected type of operations and verify, at compile-
time, if those types are respected. Code editors typically
integrate this verification to provide developers with immediate
feedback about the incorrect use of variables and values,
simplifying the debugging process by helping developers to
identify the errors more easily.

However, the type systems of these programming languages
restrict the expressiveness of domain-specific information that
can be introduced in a program limiting the class of errors

1 @Refinement(”r >= 0 && r <= 255”)
2 int r = 90; // Correct
3 r = 200 + 60; /* Correct in Java, but raises a Refinement Type Error:
4 Type expected: (r >= 0 && r <= 255);
5 Refinement found: (r == 200 + 60) */

Listing 1: Variable refinement and verification in LiquidJava.

caught at compile time. Refinement Types are more expressive
than popular type systems [3], as they extend the language
with predicates that restrict the allowed values in variables and
methods. For example, Listing 1 shows a simple refinement on
the variable r, restricting the allowed values to the range of 0
and 255. Liquid Types [4] represent the decidable subset of
refinements that allow automatic verification by SMT solvers.

Refinement Types have been used to detect simple division
by zero errors and out-of-bounds array access bugs [5], as well
as more complex security issues [6] and protocol violations [7].
Despite these advantages, Refinement and Liquid Types have
not become mainstream, raising questions about their usability
and usefulness.

Previous works on Liquid Types have not included a
human-focused design or evaluation. Moreover, the initial
implementation of Liquid Types targeted ML [8], and the most
mature implementation (LiquidHaskell [9]) targets Haskell,
both of which are functional programming languages with
relatively low adoption in industry compared to languages such
as Python, C, Java, and Javascript. Although Refinement Types
have been added to C [10] and Javascript [11], these extensions
have not been mature enough to be adopted in the industry.

In this work, we follow a user-oriented approach to design
and evaluate Liquid Types for one of the most popular program-
ming languages in the world, Java. Our approach is comprised
of two parts: First, we design a Liquid Types extension for
Java following a participatory design methodology, where users
guide the decision on how to express Liquid Types. Then, we
conduct a user study to evaluate if using this extension is more
beneficial when compared to using plain Java. Therefore, our
contributions are:

• The design of LiquidJava, an extension of Java that
supports Liquid Types, based on user feedback, and
subsequent prototype implementation.

• A user study that evaluates the usability of LiquidJava,
namely how understandable the code with refinements is,
and whether it is more useful for developers to detect and
fix bugs, when compared with plain Java.

Data Availability: The data supporting this paper is available
online at https://doi.org/10.5281/zenodo.7545674. The online
package includes the study guides, the data gathered during
their execution and a virtual machine to simulate the required
environment.

II. LIQUIDJAVA DESIGN

Designing interactive systems with the input of prospective
users is a popular strategy in the field of HCI (Human-Computer
Interaction) [12, 13]. Designers of new systems are encouraged
to develop prototypes that aim to fulfill the users’ needs and
apply formative evaluations of the prototypes to include the
users’ feedback in their design solutions.

Programming languages are a form of human-computer
interaction, and they should be designed to meet the developers’
needs and expectations, having a clear focus on usability. While
most of the effort in studying programming language interaction
has been focused on learning (e.g., Hedy [14]), advances are
being made in studying the interaction of experts. Coblenz et
al. [15] discuss the difficulties of applying HCI methods to
the design of languages and propose a process, PLIERS, for
designing languages focused on the users. These principles
were used in the development of two languages: Glacier [16],
a language for immutability in Java, and Obsidian [17], a
language to model blockchain protocols.

For LiquidJava, we started by defining usability requirements
(Section II-A). Then, we applied a formative study with users to
drive the choice of the syntax based on our proposed alternatives
(Section II-B). Based on the results of the formative study, we
added Liquid Types to Java, covering local variables, fields,
method definitions, and method invocations.

A. Requirements

To promote the usability of Liquid Types in Java, we
identified three requirements to guide the language design.
These requirements were based on previous implementations
of Refinement Types and popular characteristics of successful
static verification techniques, such as the @NonNull annota-
tion [18], as well as feedback from developers [19, 20]. The
requirements are the following:
R.1 Refinements must be optional: Without refinements, a

Java program must be successfully validated by the liquid
type-checker, allowing specifications to be introduced after
the implementation, including to pre-existing codebases.
This grants the developer the possibility of incrementally
building the program’s specification.

R.2 Refinements need to be expressive: Refinements need to
cover a wide range of specifications while being written
with a syntax similar to Java to enable developers to write
specifications without learning a completely new language.

R.3 Refinement type-checking should be decidable: The
type-checking process should be decidable to prevent
unnecessary overhead to the compilation process, provide
interactive feedback to developers as they code, and reduce
false positives — all concerns mentioned in previous

static analysis tools [19, 20]. To this end, the refinements
language is restricted to Liquid Types, which are verifiable
by SMT solvers. Thus, the predicates are restricted
to decidable logics using quantifier-free linear integer
arithmetic with uninterpreted functions and accepting only
SMT-decidable operations.

The design solution to fulfill the requirements can be split
into two main topics: the design of the refinements language
and how it is incorporated into Java programs; and the design
of the verification system to validate these programs.

Refinements Design: For the design of the refinements, we
first had to decide how to introduce the predicates in the Java
source code while following the aforementioned requirements,
specifically regarding the need for a flexible and understandable
language. Moreover, in previous refined typed languages [11, 3],
variable and method declarations have been the main target
of refinement annotations. However, classes are also a core
concept in Java and a desirable target for refinements.

Considering this, we decided to encode the refinements
as Java Annotations in the source code since annotations are
optional, support all necessary targets, and have been commonly
used in Java since their introduction in JDK 1.5. This decision
fulfills R.1 since these annotations are always optional as
the Java type checker does not verify them. Additionally,
annotations are attached to target code elements including local
variables, parameters, methods, fields, and classes, allowing
us to introduce refinements to all the desired code elements
considered in this study.

Using annotations to express restrictions on variables has
become more popular over the years, with @NonNull and
@NonEmpty being present in many Android and enterprise
applications, as well as in verification tools for Java (e.g.,
Jakarta Bean Validation [21], Checker Framework [22]). The
popularity of annotations gives us some confidence that their
usage within LiquidJava will not constitute a barrier to the
system’s adoption. Thus, a new @Refinement annotation was
created to express refinements, and other annotations were also
created as syntactic sugar (e.g., @StateRefinement).

However, annotations by themselves are not flexible or very
expressive. Therefore, the refinements are written as strings
inside the annotations and follow a custom language developed
to be as similar to Java as possible, addressing R.2 and
reducing the obstacles in writing specifications. To improve
the understandability of the language, we conducted an online
survey to assess the best syntax for the features of the language
while keeping it verifiable by SMT Solvers (respecting R.3).
The syntax survey is detailed later in this paper in Section II-B.

System Design: To verify a Java program annotated with
refinements, a LiquidJava verifier either proves that all refine-
ments are respected throughout the program, or shows that
there is a violation of the specification (design in Figure 1).

The verifier receives a Java program annotated with refine-
ments as input and performs a static verification before the
execution of the program. The first step of the system involves
parsing the input to an abstract syntax tree (AST) used for the
verification, using the Spoon [23] framework. Taking the AST

2

https://doi.org/10.5281/zenodo.7545674

Program
annotated

with
Refinements

.java

Liquid
Typechecking

Verify
Refinements

Spoon Z3 All refinements
verified

Failed to verify
refinement Compiler

Parsing

Fig. 1: Pipeline of the LiquidJava system.

representation of the program, the liquid type checker traverses
the AST and checks all expressions against their expected type
through subtyping relationships. These relationships are then
discharged to an SMT Solver, which proves their satisfiability.
The details of the verification process are out of the scope of
this paper but are available in online resources. 1

B. Syntax Survey

To design the refinement syntax, we decided to get feedback
from Java developers instead of following a personal prefer-
ence, which is the most common approach in designing new
languages. Therefore, to assess the best syntax for the language
of refinements, we created and shared an online survey with
possible syntaxes for different LiquidJava features, some based
on other implementations of Refinement Types and others based
on the Java language. These features include type refinements
of variables and methods and the use of predicate aliases
and anonymous variables. To minimize the time needed to
complete the survey and have more participation, we proposed
two to three syntax options for each language feature instead
of asking the participants for their syntax proposal. Specifically,
we asked the participants to evaluate each of the syntax options
we designed with one of three preference levels: Not Acceptable,
Acceptable, and Preferable.

The study was sent to academic students, researchers, and
industry Java developers. As a result, we obtained 50 answers
from participants acquainted with Java. The survey started
with questioning the participants’ background and briefly
explaining the concept of Refinement Types before questioning
the preferred syntax options for LiquidJava features. The
background answers of participants show that more than half
of the participants (a total of 56%) are Not Familiar at all with

1https://catarinagamboa.github.io/papers/master thesis.pdf

In this section we present syntax examples for refinements in methods, which includes
refinements for the parameters and the return value.
These refinements express the following conditions:
- grade, the first parameter, is an int greater than or equal to 0;
- scale, the second parameter, is a positive int;
- the return value must be an int between 0 and 100.
Analyse each of the examples below.

 Refinements in Methods

@Refinement("\\v >= 0 && \\v <= 100")
public static int percentageFromGrade (@Refinement("grade >= 0") int grade,
 @Refinement("scale > 0") int scale)

A

@Refinement("{grade >= 0} -> {scale > 0} -> {\\v >= 0 && \\v <= 100}")
public static int percentageFromGrade (int grade, int scale)

B

Evaluate your preference on each of the above syntaxes.

A
B

Not acceptable Acceptable Preferable

Fig. 2: Question on the preferable syntax for refinements in
parameters and return value of methods.

Not Accept. Acceptable Preferable
Syntax A

0

5

10

15

20

25

5

21
24

Not Accept. Acceptable Preferable
Syntax B

0

5

10

15

20

25

13

18 19

Refinements in Methods

Fig. 3: Preferences on the Syntax for Methods’ Refinements.

Refinement Types and that only 2% consider themselves Very
Familiar with the concept. These percentages show that most
developers are not familiar with Refinement Types, highlighting
that they are not widely spread.

Figure 2 represents one of the survey questions, where
participants could read the description of the refinements for
each of the parameters and the return type of the method
percentageFromGrade and analyze each of the proposed
syntaxes to then evaluate with their preference. These syntax
options follow two different designs. The first option attaches
each refinement to the type of variable that it is refining.
Therefore, the parameters have the refinements just before their
basic type, and the return refinement is above the method before
the return type. The latter option has a syntax inspired by the
type signatures used in functional languages, such as Haskell.
Therefore, the parameters and return refinements are written
in the same line, split by the -> symbol, with a specific order
starting with the parameters and finishing with the method’s
return type.

The participants evaluated their preference for both proposed
syntaxes, and Figure 3 shows the gathered results. The first
option had more Preferable answers and fewer Not Acceptable
answers, which made us choose the first syntax for this feature.

The remaining features had similar syntax questions and
preference evaluation (available in additional resources). We
concluded that throughout the survey, participants preferred
syntaxes with a flavor similar to Java, discarding syntaxes
closer to previous implementations of Refinement Types that
had a style closer to the syntax of functional languages.

C. LiquidJava Features

LiquidJava supports the refinement of variables and fields
whose assignments must always respect the introduced pred-
icates. Furthermore, it is possible to add refinements to
return values and parameters of methods, verifying the return
value against the expected type and verifying the method’s
invocations with the expected arguments.

Listing 2 depicts an example of these features. The inRange

method receives two parameters, a and b, where the first
parameter has no annotation, staying with the default refinement
of true. In contrast, the second parameter has a refinement
dependent on the first, informing that it should be greater than
the value of the first parameter. Above the method’s signature
(line 1) is the return value refinement, which informs that the
return value (represented by the) is expected to be within the

3

https://catarinagamboa.github.io/papers/master_thesis.pdf

1 @Refinement (”a <= && <= b”)
2 public static int inRange(int a, @Refinement(”b > a”) int b) {
3 return a + 1;
4 }
5 @Refinement (”x >= 10”) int x;
6 x = inRange(10, 20 − 5); // Correct invocation and assignment
7 inRange(10, 2); /* Refinement Type Error
8 Type expected: (b > a);
9 Refinement found: (b == 2) && (a == 10) */

Listing 2: Refinement annotation of a method and a variable
and verification of related operations.

range of both parameters. All return values are also checked
against the declared return refinement.

In line 5, a variable x is declared with a refinement that
restricts its value to integers greater or equal to 10. In the
following assignment, the method invocation must respect the
parameters’ refinements, and the invocation’s return should
respect the variable refinement. In this case, both verifications
hold, validating the operation. However, the second invocation
produces an error since the second argument is not greater than
the first one, and an error message depicting that information
is shown to the user.

In LiquidJava, refinements can also be used to model the state
of class objects. Although previous extensions of Refinement
Types did not focus on object modeling, classes are considered
a fundamental programming element of the Java language [24]
and, therefore, we model them using type states [25].

Although classes themselves do not have a specific value that
can be refined, they can have methods that produce changes to
the internal state of the objects. Therefore, we can refine the
object state by restricting which state the object has to be in
when a method is invoked and what is the state of the object
after the execution of the method. Both predicates are encoded
in methods with the annotation @StateRefinement(from=

"predicate", to="predicate"), where the from argument
indicates the object state from which the method can be called,
and the to argument contains the resultant object state.

A method can have different combinations of source and
destination states. These combinations are encoded as multiple
@StateRefinement annotations above the method. To model
the class state, one can create ghost functions that represent
class properties (e.g., the size of a list) or define a set of
states that the class objects can have. The states and the ghost
properties are invoked inside the predicates as functions that
take the current object as an argument using the this keyword.
Moreover, if it is necessary to refer to the object’s previous
state, it is possible to use the old keyword with the current
object, resulting in the expression old(this).

Using @StateRefinement allows users to define protocols
that a class must follow by encoding a finite state machine
within the refinements. Java classes usually define protocols
that the client programs must follow. However, these protocols
are primarily defined through informal documentation using
natural language (e.g., Javadoc). Therefore, most protocols
are not enforced during code development, leading to runtime

1 @ExternalRefinementsFor(”java.net.Socket”)
2 @StateSet({”unconnected”, ”bound”, ”connected”, ”closed”})
3 public interface SocketRefinements {
4 @StateRefinement(to=”unconnected(this)”)
5 public void Socket();
6
7 @StateRefinement(from=”unconnected(this)”, to=”bound(this)”)
8 public void bind(SocketAddress add);
9

10 @StateRefinement(from=”bound(this)”, to=”connected(this)”)
11 public void connect(SocketAddress add, int timeout);
12
13 @StateRefinement(from=”connected(this)”)
14 public void sendUrgentData(int n);
15
16 @StateRefinement(from= ”!closed(this)”, to=”closed(this)”)
17 public void close();
18 }

Listing 3: Socket class object state refinement.

boundunconnected connected closed
bind connect close

close

close

sendUrgentData

Fig. 4: DFA representing the Socket class states and transitions.

exceptions. By encoding the protocol definitions in LiquidJava,
developers get feedback on the correct use of classes before
the program execution, allowing them to, for example, use
external libraries with more confidence.

Listing 3 shows the annotation of the native library java.net

.Socket.2 The specification models the implicit state machine
semantics (shown in Figure 4), documented only in natural
language. The @StateSet annotation describes all possible
states, and each method describes the states in which it is
available (from) and the state in which the object is after the
method execution (to). Using this specification, a program that
invokes sendUrgentData without first invoking connect will
not be accepted.

D. IDE Integration

To enhance the usability of LiquidJava, we developed an
IDE plugin to provide immediate liquid typechecking feedback,
while developers are programming. It also provides localization
of bugs by underlining the relevant incorrect code. Figure 5
shows how errors are reported. While we support it as a plugin
for VSCode, it is available as a Language Server [26], which
can be easily integrated in other IDEs.

III. USER STUDY

Evaluating software engineering tools with user studies is
not a recent practice, but it is still scarce. Mainly because most
researchers find these experiments too difficult to design and
conduct, have difficulties recruiting participants and believe that
the results might be inconclusive [27]. However, researchers

2https://docs.oracle.com/javase/7/docs/api/java/net/Socket.html

4

Fig. 5: IDE Plugin reporting an error in the incorrect usage of
the Socket class.

who conducted user studies agree that these evaluations provide
useful insights that outweigh the study costs while increasing
the impact of the work [28].

In previous research, authors have employed user studies to
understand how programmers write code [29, 30] and compare
different programming language designs. For example, compar-
ing the benefits of using static versus dynamic type systems for
maintainability and undocumented software, [31, 32] analysing
the usability and learnability of API aspects [33, 34], and
advanced language features such as lambdas [35] and garbage
collection [36]. In PLIERS, the authors also present strategies
for conducting summative usability studies and apply them
to two novel programming languages. These studies either
apply usability studies or randomized control trials (RCTs) [15].
Usability studies usually have participants complete tasks where
relevant data is retrieved, such as the time spent on the task,
the correctness of the answers, and the errors made. In RCTs,
the study configuration aims to compare two or more design
options having one option as a control condition and assigning
each participant a random design to fulfill the tasks.

To evaluate LiquidJava, we developed a user study that
combines the two types of tests to answer the questions:

Q1 Are refinements easy to understand?
Q2 Is it easier and faster to find implementation errors using

LiquidJava than with plain Java?
Q3 Is it hard to annotate a program with refinements?
Q4 Are developers open to using LiquidJava in their projects?

Given these research questions, we planned the study with
tasks to assess the usability of LiquidJava, and compare its ben-
efits against Java. This section depicts the study configuration
(Section III-A), the participants’ background (Section III-B),
and the detailed tasks with results (Section III-C) and their
discussion (Section III-D). In the end, the threats to the validity
of the study are presented (Section III-E).

A. Study Configuration

The study was designed to introduce participants to Liquid-
Java and answer the aforementioned research questions.

Group 1

Group 2

Task 2
Understand Refinements without prior explanation

Task 4
Annotate Java programs with LiquidJava

Comments
Describe what they liked and disliked about LiquidJava

Overview of LiquidJava

RQ2

RQ1+3

RQ4

Sum
Socket Exercises

RQ2

RQ1

Fibonacci
ArrayDeque

Answers
(Correct, Incorrect,
Compiler Correct,
Unanswered)
Time spent

Long Answers

Analysed Data

Group 2

Sum
Socket

ExercisesFibonacci
ArrayDeque

RQ2

Task 1 - Find the error in plain Java

Task 3 - Find the error in LiquidJava

Fig. 6: Configuration of the user study.

The study was conducted individually with each participant,
and everyone received the study plan with the described tasks
and the answer sheet to input their answers. The participants
were free to quit the study at any time and skip questions if
they felt unable to answer them; however, they could not go
back to previous study sections.

Figure 6 schematizes the configuration of the study. When
starting, each participant was randomly assigned to one group.
All participants within a group followed the same order of
exercises. However, the two groups had different exercises
for two tasks to compare the participants’ performance using
Java and LiquidJava. Each section of the study is described as
follows:

• Task 1: Find the error in plain Java – Participants
were asked to detect implementation errors in Java code
and provide a possible correction. The implementation
errors make the execution incorrect against the informal
documentation presented in the method’s Javadoc. The
participants could use all the IDE environment resources,
including reading documentation, changing the code, and
even executing the code.

• Task 2: Interpreting refinements without prior ex-
planation – Although participants must be familiar with
Java, they are not required to be familiar with refinements.
Thus, all participants had their first contact with LiquidJava
in this task. Here, the participants had to interpret the
refinements present in different sections of the code
(variables, methods, and classes) and provide a correct
and incorrect use of the annotated code without ever being
introduced to the language. This task aims to see if the
participants find the refinements intuitive and easy to
use without a prior explanation. Thus, this study section
is related to Q1, and the data gathered captures the
correctness of the answers the participants gave to the
correct and incorrect uses of the refinements.

• Overview of LiquidJava – Participants were exposed to
a 4-minute video and a webpage explaining the concepts
of LiquidJava using the examples of the previous task.
Both resources were available for the participants to
use in the remainder of the study. These materials help
make the study reproducible while reducing bias from the

5

Familiarity with
Java

Familiarity with
Refinement Types

0

5

10

15

20

25

Nu
m

be
r o

f A
ns

we
rs

57%

7%

37%

13%
7%

53%

0%

27%

Very Familiar
Familiar

Vaguely Familiar
Not Familiar

Created test cases
 andused frameworks
to test Java programs

Already had
contact with
 LiquidJava

87%

10%13%

90%

Yes No

Participants' Background

Fig. 7: Answers to participants’ background.

interviewers.
• Task 3: Find the error with LiquidJava – This was

a repetition of Tasks 1, but using the LiquidJava plugin.
There were two exercises to reduce the bias of already
knowing the solution. Each half of the participants did
one problem in Task 1, the control conditions, and the
alternative problem in Task 3. Comparing the performance
between the two tasks allows us to answer to Q2.

• Task 4: Annotate Java programs with LiquidJava –
Participants were presented with three Java programs and
were asked to annotate them with LiquidJava specifica-
tions. This task aims to answer Q3 by asking participants
how difficult it was to annotate variables, fields, methods,
and classes. Because this was a relatively short task, its
success also answers Q1.

• Final Comments – Finally, participants were asked about
their overall opinion on using LiquidJava. They were also
asked if they would like to use LiquidJava in their future
projects to answer the last research question, Q4.

The study sessions were all conducted through the Zoom
video platform, and participants used their own environments
to complete the study tasks. To ensure that these environments
fulfilled the requirements to complete all tasks, participants
installed Visual Studio Code with JDK11 and the Language
Support for Java(TM) by Red Hat extension. During the study,
participants had access to the GitHub repository with the study
files, a webpage with information on LiquidJava, and all IDE
features provided by the plugins.

B. Background of Participants

We designed the study for 30 participants familiar with Java
and recruited them through social media channels, such as
Twitter and Instagram, and through direct contact via email.

Figure 7 shows that more than 90% of the participants
considered themselves Familiar or Very Familiar with Java.
The remaining participants, who considered themselves only
Vaguely Familiar with Java, were only accepted into the
study because they selected they were familiar with testing
frameworks (e.g., JUnit). Of all the participants, 80% were
Vaguely Familiar or Not Familiar with Refinement Types, which
shows that despite their utility, Refinement Types are not widely
known and used. The three participants familiar with LiquidJava
had attended a talk about it but had not used it in any capacity.

As for the participant’s occupations, around 50% are university
students, 26% work in the industry, and the remaining work
as faculty in academia, as described in the Table I.

All participants completed the study, and the gathered data
results are analyzed in the next section.

TABLE I: Occupations of study participants.
Occupation/Job # Participants

Business 8 (26.7%)
Faculty 6 (20.0%)

PhD Students 5 (16.7%)
Masters Students 7 (23.3%)

Final-Year Bachelor Students 4 (13.3%)

C. Exercises and Results

This section presents the exercises used in each of the tasks
of the study and the results obtained.

1) Interpreting Refinements without prior explanation:
Since 90% of the participants had no previous contact with
LiquidJava, and more than 80% were not familiar with
Refinement Types, we wanted to understand if, without a
prior explanation, the added specifications were intuitive to
use. Thus, the study included a task with refinements examples
that the participants needed to interpret and use. Specifically,
we presented three code snippets with LiquidJava refinements
with an increasing difficulty level (as showed in Listing 4) and
asked the participants to implement a correct and incorrect
usage for each of the represented features.

In the first exercise, participants had to assign a correct and
incorrect value to the variable x, which was restricted by the
limits of Earth’s surface temperature. The second task had
participants implement correct and incorrect invocations of
function1, where the second parameter depends on the first.
The last task presented a class protocol with three states and
methods that model the object state. Here, the participants were
asked to create a MyObj object and implement a correct and
incorrect sequence of at least three invocations. The MyObj
class aimed to represent a Vending Machine with the three
states sX, sY and sZ as Show Items, Item Selected and Paid,
respectively. The anonymization of the states and the class name
were intentional to make the participants try to understand the
refinements instead of calling the methods according to their
mental idea of how a vending machine works.

Figure 8 shows the evaluation of the answers given by
the participants. Each answer was classified as Correct if
both the correct and incorrect usage of the specification were
correct, Incorrect if at least one of the usages was incorrect,
or Unanswered if the placeholder for answering was left
blank. In the variable assignment, 86.7% of the participants
answered correctly. The remaining participants understood
the error when the examples were explained and claimed
that the error was a pure distraction and misread the logical
operators. The invocation of the annotated method had only
one incorrect answer (3.3%). For the sequential methods’
invocations, that depended on the class protocol described
using the @StateRefinements, 46.7% of the answers were

6

1 // 1 − Variable Refinement
2 @Refinement(”−25 <= x && x <= 45”) int x;
3
4 // 2 − Function/Method Refinement
5 @Refinement(” >= 0”)
6 public static double function1(@Refinement(”a >= 0”) double a,

@Refinement(”b >= a”) double b)
7 { return (a + b)/2; }
8
9 // 3 − Class Protocol Refinement

10 @StateSet({”sX”, ”sY”, ”sZ”})
11 public class MyObj {
12 @StateRefinement(to=”sY(this)”)
13 public MyObj() {}
14
15 @StateRefinement(from=”sY(this)”, to=”sX(this)”)
16 public void select(int number) {}
17
18 @StateRefinement(from=”sX(this)”, to=”sZ(this)”)
19 public void pay(int account) {}
20
21 @StateRefinement(from=”sY(this)”, to=”sX(this)”)
22 @StateRefinement(from=”sZ(this)”, to=”sX(this)”)
23 public void show() {}
24 }

Listing 4: Exercises to interpret refinements.

Variables Methods Class Protocol
Annotation Target

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

Nu
m

be
r o

f A
ns

we
rs

86.7%
96.7%

46.7%

13.3%
3.3%

26.7%

26.7%

LiquidJava Usage before Overview

Correct Incorrect Unanswered

Fig. 8: Answers on interpreting LiquidJava refinements.

correct, and the remaining amount was split into incorrect
and blank answers, hinting that this example is less intuitive
and harder to understand without a prior explanation, but still
comprehensible by almost half of the participants.

Overall, refinement annotations in variables and methods
seem intuitive and easy to understand. However, the annotation
of classes and their methods with protocols is less intuitive.
In half of the cases, the participants would need a previous
explanation to use these annotations correctly.

2) Using LiquidJava to Detect Bugs: Participants had
similar exercises in the first and third tasks to compare the effort
of detecting and fixing bugs while using Java and LiquidJava.
The four exercises used in the study are versions of Fibonacci,
a Sum of all numbers until a given input, and invocations to the
ArrayDeque and Socket libraries. The exercises are simple, with
a maximum of 15 lines of meaningful code (e.g., disregarding
empty lines), to ensure that the participants can reason about

Exercise Average Time Java Average Time LiquidJava
Fibonacci 2 mins 52 secs 3 mins 22 secs

Sum 4 mins 30 secs 3 mins 32 secs
ArrayDeque 3 mins 41 secs 2 mins 56 secs

Socket 5 mins 35 secs 4 mins 42 secs

TABLE II: Average times to complete the exercises.

the programs with their Java background and the introduced
information about Liquid Types. Since all participants are
already used to working in Java, they all start with the plain
Java exercises, and after a brief introduction to LiquidJava,
they move to detect bugs with the custom plugin activated.

Each exercise has two versions, a plain Java and a LiquidJava
version, with the same implementation errors that allow us to
compare the number of participants that found and fixed the
bug and the time taken by the participants to complete the
exercises. A group of participants started with the exercises Sum
and Socket while the second group started with the plain Java
versions of the exercises Fibonacci and ArrayDeque. When
moving to detect the errors using LiquidJava, the first group
had the exercises Fibonacci and ArrayDeque whereas the
second group got the exercises Sum and Socket. Therefore,
one participant never used the same exercise in both tasks,
avoiding tainting the second task with previous knowledge of
the solution and allowing us to obtain plain Java baselines
for every exercise. With this split, the maximum number of
answers to each version is 15 since only half the participants
viewed each exercise version.

For each exercise, we gathered the time spent and the
written answers for the incorrect line(s) and the proposed fixes.
The answers were then evaluated into one of four possible
categories: Correct, Incorrect, Unanswered, and Compiler
Correct. The last category represents the answers that silenced
the compiler error despite not being utterly correct according
to what the exercise asked.

The results of finding and fixing bugs in the four exercises
are displayed in Figure 9. Moreover, the figure includes two
plots on the distribution of time taken by participants in each
exercise, and the average times for each exercise are in Table II.
The code given to participants and their answers is available
online at https://doi.org/10.5281/zenodo.7545674.

All exercises have in common that 100% of participants
found the error location while using LiquidJava, which was
expected since the plugin underlines the error found. However,
the plugin does not inform about a possible fix, and in most
cases, participants outperform the LiquidJava version for fixing
the error. Additionally, in all but one exercise (Fibonacci),
participants were faster on average in the LiquidJava versions.

Both Fibonacci and Sum exercises are implemented using
recursion with an error in the base case. Inspecting each
exercise individually, we can see that in the Fibonacci exercise,
all participants fixed the error using LiquidJava, while only
66.7% fixed the error in the plain Java version. Regarding the
time spent on both versions, on average, participants were faster
in the plain Java exercise when compared to the LiquidJava.

7

https://doi.org/10.5281/zenodo.7545674

To Find To Fix
Answers

1

3

5

7

9

11

13

15

Nu
m

be
r o

f A
ns

we
rs

73.3% 66.7%

13.3% 20.0%

13.3% 13.3%

Java

To Find To Fix
Answers

100.0% 100.0%

LiquidJava

Correct Incorrect Unanswered

Answers to Fibonacci

0 100 200 300 400 500
Time (s)

Java

LiquidJava

Ve
rs

io
n

Time spent in the Fibonacci exercise

To Find To Fix
Answers

1

3

5

7

9

11

13

15

Nu
m

be
r o

f A
ns

we
rs

93.3% 86.7%

6.7%
6.7% 6.7%

Java

To Find To Fix
Answers

100.0%

46.7%

46.7%

6.7%

LiquidJava

Correct Compiler Correct Incorrect

Answers to Sum

To Find To Fix
Answers

1

3

5

7

9

11

13

15

Nu
m

be
r o

f A
ns

we
rs

100.0% 100.0%

Java

To Find To Fix
Answers

100.0% 100.0%

LiquidJava

Correct

Answers to ArrayDeque

200 400 600 800 1000
Time (s)

Java

LiquidJava

Ve
rs

io
n

Time spent in the Socket exercise

To Find To Fix
Answers

1

3

5

7

9

11

13

15

Nu
m

be
r o

f A
ns

we
rs

6.7%

53.3%
53.3%

40.0% 46.7%

Java

To Find To Fix
Answers

100.0% 100.0%

LiquidJava

Correct Incorrect Unanswered

Answers to Socket

Fig. 9: Results on finding and fixing errors using Java and LiquidJava.

This result suggests that participants might already be used
to Fibonacci’s plain implementation, given the algorithm’s
popularity in introductory programming classes. When the
new refinements were added, participants spent more time
understanding the different code sections.

For the Sum exercise, 7 participants correctly fixed the
program, and the other 7 provided a Compiler Correct answer.
These last answers silenced the compiler error since they
complied with the liquid specification but did not comply with
the informal specification of the method. After reviewing these
answers, it is possible to see that 6 out of the 7 participants
fixed the error with the same code as they used in the first
exercise in plain Java (Fibonacci), and while it was the correct
fix before, it was not the required fixed in this exercise. This
line of thought might indicate that participants were biased
by the previous sections of the study and opted for the same
answer as they used in the beginning.

In the ArrayDeque exercise, all participants fixed the error
in both versions by fixing the order of invocations of popular
methods to add, remove, and retrieve elements from an
ArrayDeque object depending on its number of elements.

The Socket exercise is the one with the largest difference in
the number of correct answers while using Java and LiquidJava.
In the Java version, none of the participants could fix the error,
giving a wrong fix or leaving the answer blank. However, while
using LiquidJava, every participant understood that there was
a missing invocation in the order of methods to make the

invocations valid. In both cases, the participants had access
to the informal documentation of the library through the Java
plugin active in the IDE. The time spent in this exercise shows
that participants were faster by 52 seconds in LiquidJava, on
average, with a higher rate of correct answers.

3) Adding LiquidJava Annotations: In Task 4, participants
were asked to add LiquidJava annotations to the implemented
code according to the informal documentation written in the
program as comments. In this step, participants could use the
website and the video to help write the refinements.

Participants had to annotate programs with increasing order
of difficulty. The first program relied only on the annotation of
a variable with its bounds. The second program expected the
annotation of a method by specifying the parameters and return
refinements. Finally, the third program required the annotation
of a class protocol and the class fields. For each program, we
presented an example of a correct usage of the refinement and
another example of its incorrect usage to help the developers
test their refinements.

The participants shared their proposals for the annotation of
each exercise, and we evaluated them with the four categories
used in the previous section, of Correct, Incorrect, Unanswered
and Compiler Correct. The results of the annotations are in
Figure 10 and are analyzed along with each exercise below.

The first and more straightforward exercise just included
a variable named currentMonth that should be restricted
with the lower and upper bound of month values, resulting

8

Variables Methods Class Protocol Class Fields
Annotation Target

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

Nu
m

be
r o

f A
ns

we
rs

100.0%

80.0%

100.0%

43.3%

20.0%

56.7%

LiquidJava Annotation Results

Correct Compiler Correct Incorrect Unanswered

Fig. 10: Results of the annotations with LiquidJava.

in a code similar to @Refinement("currentMonth >= 1 &&

currentMonth <= 12"). In the first exercise, all the participants
used the website as a resource to look for the right syntax, and
100% of them annotated the variable correctly. The second
exercise presented the method inRange where participants
should add a refinement to the second parameter, changing the
signature of the method to public static int inRange(int

a, @Refinement("b > a")int b), and refine the return type
of the method, adding the refinement @Refinement("_ >= a

&& _ <= b") above the method’s signature.
24 out of 30 participants were able to add the expected

annotations leading to 80% of Correct answers. However,
20% only added the annotations to the parameter, silencing the
example error but not completing the exercise in its totality,
which led to the Compiler Correct answers.

For the last exercise, we asked participants to “Annotate
the class TrafficLight, that uses RGB values (between 0 and
255) to define the color of the light, and follows the protocol
defined by the image [in Figure 11]”, as announced in the
study guide. The evaluation of this exercise was split into two:
the addition of the refinements to model the class protocol and
the specification on the class private fields.

All participants correctly modeled the class by declaring the
starting states and the state transitions of each method. This
percentage constitutes a significant increase in the understand-
ing of class protocols compared to the first time participants
tried to understand the protocol in Task 1, where half of the
participants could not interpret the meaning of the annotations.

However, only 43.3% of participants annotated the class
fields. The remaining ones did not add any refinement to fields,
leaving an incorrect assignment inside a method’s body. There
might be several reasons for this occurrence. One might be that
they misinterpreted the exercise, not realizing the need for these
annotations. Another possible explanation is that participants
did not consider it important to add these annotations to the
code.

After being introduced to the annotations, the participants
had to evaluate the ease of adding annotations from 0 - Very
Difficult to 5 - Very Easy. 60% of the participants considered
that adding the annotations was Very Easy, while the remaining

1 public class TrafficLight {
2 private int r;
3 private int g;
4 private int b;
5
6 public TrafficLight() { r = 76; g = 187; b = 23; }
7 public void transitionToGreen() { r = 76; g = 187; b = 23; }
8 public void transitionToAmber() { r = 255; g = 120; b = 0; }
9 public void transitionToRed() { r = 230; g = 0; b = −1; }

10 }
11
12 //Correct Test − different file
13 TrafficLight tl = new TrafficLight();
14 tl.transitionToAmber(); tl.transitionToRed();
15 tl.transitionToGreen(); tl.transitionToAmber();
16
17 //Incorrect Test − different file
18 TrafficLight tl = new TrafficLight();
19 tl.transitionToAmber();
20 tl.transitionToRed();
21 tl.transitionToAmber();
22 tl.transitionToGreen();

transitionToAmberGreen

transitionToRed

Amber

transitionToGreen

Red

Fig. 11: Program to annotate with the protocol showed in the
diagram, and with the limit ranges on fields.

40% considered the task Easy, leading us to conclude that
refinements are simple to add to implemented code.

4) Final Comments: At the end of the tasks, we asked the
participants about the overall experience of using LiquidJava
using three questions:

• What did you enjoy the most while using LiquidJava?
• What did you dislike the most while using LiquidJava?
• Would you use LiquidJava in your projects?
Figure 12 summarizes the answers to the first two questions

with the codes obtained through a qualitative coding [37]
approach and quotes from participants. We used inductive
coding to create the codes, which were then used to review
all passages and to identify the main topics of each answer,
leading to a cohesive and systematic view of the results. We
found that participants mostly appreciated the error reporting,
state refinements to model objects, and the intuitive and non-
intrusive syntax. As for the disliked topics, only 26 participants
answered the question, from which eight explicitly mentioned
there was nothing they did not like. The remaining negative
aspects are related to some syntax options and plugin features
to improve.

The last question of the study asked if participants would
use LiquidJava in their projects, to which all the participants
answered affirmatively. However, in the final suggestions,
one participant declared that they would only use it in critical
parts of the project, and two other participants stated that they
are not currently using Java in any project but would like to
have similar verifications in other programming languages.

D. Study Conclusions

The major takeaways of the study can be summarized in the
following points.

• Interpretation of refinements (Q1) – Refinements in
variables and methods are easy to understand without a
prior explanation, and even though the features to model

9

"Helps to define the
program's logic and avoid

future errors"
"[...] because enforcing correct

state transitions in the implemen-
tations is tedious and error-prone
"Very intuitive syntax"; "The simple

syntax based on annotations"

"Easy to understand in
terms of semantics"

"helped me a lot to understand which
values/methods are correct when I'm

coding"

"Nothing, it is quite
straighforward to be

used"
"[in state refinement]

repetition of this"; "using
_ for the return value"

"Improve the usability of the
plugin (...) -use auto-complete

inside the refinements"
"Hard to understand without

access to documentation,
mainly DFA protocols"

"Some error messages are
not straight to the point"

"Makes Java more verbose"

"The installation process
was not very user friendly"

"Very well assisted by the custom
vs code extension"

"+1 to the diverse set of refinements that
can be written in different parts of the code"

8

6

3

2

Nothing

Syntax

Plugin
Features

Not
Intuitive

Error
Messages

Verbose

3

3

Other

12

11

6

5

5

4

3

Error
Reporting

State
Refinements

Syntax

Plugin

Understand-
ability

Useful

Resources

Flexibiliy
2

"The examples and the video were very
elucidative"

4

What did you like the most
about LiquidJava?

What did you dislike the most
about LiquidJava?

Fig. 12: Comments on what participants liked and disliked.

classes are not very intuitive at first, they are easy to
understand with few resources.

• Detecting and fixing implementation errors in Java and
in LiquidJava (Q2) – From Task 1 (Section III-A) and
3 (Section III-A), it is possible to assess that LiquidJava
helped developers find the error present in the code. For
fixing the bugs, LiquidJava helped in all but one case
since developers focused on silencing compiler errors
disregarding the reasoning behind the changes applied. As
for the time taken in each exercise, participants generally
finished the LiquidJava exercises faster.

• Best result for detecting and fixing error in LiquidJava
– From all exercises, the one with the most improvements
while using LiquidJava was the Socket client, where no
participant could fix the error in plain Java. However, all
participants were able to detect and fix the error using
LiquidJava. This result might show that LiquidJava is
more useful when applied to lesser-known classes and
protocols than to mainstream classes or simple code.

• Annotate Programs (Q3) – All participants were able to
add refinements to variables and to model class protocols.
80% were able to add refinements to methods correctly
(the remaining silenced the errors), and 43% were able
to introduce refinements in class fields (the remaining
participants left the answer blank). Participants also
classified the annotation process as Easy or Very Easy.
Thus, we can conclude that refinements are easy to add
to the code to model the desired behavior of programs.

• Compiler Correct answers – Having partial specifications
on the code led to some participants changing the code
to respect the specification, disregarding the program’s
intent, silencing the compiler error, and passing the
verification without fully fixing the program. For example,
in the Sum exercise and the annotation of methods,
participants gave answers that were correct according
to the refinements but incorrect according to the informal
documentation, producing the Compiler Correct category
of classification. This result might show that partial
specifications can mislead developers if they do not capture
the specification’s meaning and the program’s expected
behavior.

• Would participants use LiquidJava (Q4)– Achieving
the desired number of participants in the study shows that
developers are open to participating in studies to discover
new approaches to improve their code quality. Moreover,
the affirmative answers on developers’ willingness to use
LiquidJava give us confidence that participants are open
to using this approach. Therefore, we are confident that
participants find LiquidJava accessible for its gains and
are ready to use new useful verification tools.

E. Threats to Validity

This study shares threats to validity with other empirical
studies (e.g., Glacier [16]). The first threat is the limited number
of participants and the fact that they may not represent the
population of Java developers. Their occupation in Table I
identifies the population for which this study could be gen-
eralizable. The exercises used for the tasks may also not be
demonstrative of real-world tasks since they are small and
simple to allow the sessions to be under 1h30min. However,
these tasks were designed based on problems that also occur
in larger projects. The study sessions themselves may not
represent the development environment that developers are
used to, and they might have less interest in fulfilling all tasks
correctly. However, the environment was the same for Java and
LiquidJava, and while VSCode is not on par with other IDEs,
it has the necessary features for the small tasks presented.

There is also a potential learning effect between Tasks 1 and
3. This threat was addressed by using different problems, as
described in the previous section.

IV. RELATED WORK

Freeman and Pfenning [8] introduced the concept of
Refinement Types inside ML, a strongly-typed functional
programming language, allowing the detection of more errors
at compile time. Liquid Types (Logically Qualified Data
Types) [4], proposed in 2008, represent a subset of Refinement
Types that use predicates over a decidable logic to ensure the
inference and type checking decidability. Liquid Types have a
more practical implementation in LiquidHaskell [38], featuring
type aliases to improve predicates’ brevity and readability.

Liquid Types have been used in more imperative settings.
CSolve [10] uses refinement type checking to verify heap layout
and pointer usage within C programs, using macros to express
the liquid refinements. Kazerounian et al.[39] introduced
refinements in Ruby, an object-oriented and dynamic scripting
language. Liquid Types were also added to a typed extension of
Javascript, DJS [40], that handles extensible objects, prototype
inheritance, and flow and sensitive strong updates on mutable
variables, which LiquidJava also supports.

Refinements were also introduced in Scala [41] and Type-
script [42] as class invariants on immutable class fields, which
allow reflecting immutable fields in the specification of mutable
fields. In Java, Stein et al. [43] applied a specific set of
Refinement Types to stream-based processing but used a fixed
type hierarchy, limiting the expressiveness of the refinements
without using logical predicates to qualify the types.

10

However, none of these previous works designed the refine-
ments with users’ input or applied any user study to understand
the usability of the refinements and the behavior of developers
when using these light software verification techniques. In that
sense, this is the first study that we are aware of that aims to
study the usability of Refinement Types.

Despite being scarce, some works integrate usability testing
into the design of interactive verification techniques. For
example, authors of KeY [44], a project that integrates
verification and analysis within the Java language, developed a
questionnaire to evaluate the cognitive dimensions of the tool
and improved it based on the study conclusions [45]. In later
work [46], the authors conducted focus groups to understand
the users’ typical interaction with theorem provers. The results
obtained were used to implement changes in a prototype,
which was then evaluated through an exploratory user study
to assess if the tool improvements were helpful. In another
work, Kadoda [47] aimed to compare the differences between
the designers’ and the users’ perspectives of using theorem
proving assistants (e.g., HOL [48]) using questionnaires.

V. CONCLUSION AND FUTURE WORK

Our participatory design and evaluation of LiquidJava
allowed us to conclude that refinements can be added to a main-
stream, imperative and object-oriented language. The formative
study for the language design identified that Java developers
prefer having refinements closer to the code units they refer
to (e.g., annotations closer to the method’s parameters), which
is not the popular approach in other embedded verification
languages (e.g., JML [49]).

In the summative user study, we concluded that refinements
are intuitive, with more than 86% of the participants being able
to use refinements in variables and methods without a prior
introduction to Refinement Types. However, we found object
state refinements harder to understand and use, as only 46% of
participants used them correctly. Nevertheless, after a 4-minute
video, 100% of the participants could correctly introduce the
protocol specification and consider the task easy.

More importantly, LiquidJava allowed participants to detect
and fix more bugs than plain Java, especially when classes
have states not expressed in plain Java types. As a result, all
participants showed interest in adopting LiquidJava, mostly
due to the fast and early error reporting.

This study also identifies that this lightweight verification
might give users a false sense of safety by assuming that if
a program typechecks, it is correct. Because our approach
provides only gradual verification, it is important to present
users with the exact guarantees they can expect from a type-safe
program. We plan to address this concern in future work.

ACKNOWLEDGMENTS

This work is supported by the Fundação para a Ciência
e a Tecnologia (FCT) under LASIGE Research Unit, ref.
(UIDB/00408/2020) and (UIDP/00408/2020), the project DA-
COMICO (PTDC/CCI-COM/2156/2021), the CMU-Portugal
project CAMELOT (LISBOA-01-0247-FEDER-045915), the

RAP project (EXPL/CCI-COM/1306/2021), and AFRL (Award
19-PAF00747). The work is also co-financed by two Dual
Degree Ph.D. Scholarships awarded by the Portuguese Founda-
tion for Science and Technology through the Carnegie Mellon
Portugal Program (SFRH/BD/151469/2021).

Any opinions, findings, or recommendations expressed are
those of the authors and do not necessarily reflect those of the
US Government.

REFERENCES

[1] P. Upadhyay, “The role of verification and validation
in system development life cycle,” IOSR Journal of
Computer Engineering, vol. 5, no. 1, pp. 17–20, 2012.

[2] H. Wright, T. D. Winters, and T. Manshreck, Software
Engineering at Google, 2020.

[3] R. Jhala and N. Vazou, “Refinement types: A tutorial,”
Found. Trends Program. Lang., vol. 6, no. 3-4, pp. 159–
317, 2021.

[4] P. M. Rondon, M. Kawaguchi, and R. Jhala, “Liquid
types,” in Conference on Programming Language Design
and Implementation, R. Gupta and S. P. Amarasinghe,
Eds. ACM, 2008, pp. 159–169.

[5] H. Xi and F. Pfenning, “Eliminating array bound checking
through dependent types,” in Conference on Programming
Language Design and Implementation (PLDI). ACM,
1998, pp. 249–257.

[6] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and
S. Maffeis, “Refinement types for secure implementations,”
in 21st IEEE Computer Security Foundations Symposium,
CSF 2008. IEEE Computer Society, 2008, pp. 17–32.

[7] N. Burnay, A. Lopes, and V. T. Vasconcelos, “Statically
checking REST API consumers,” in Software Engineering
and Formal Methods, F. S. de Boer and A. Cerone, Eds.,
vol. 12310, 2020, pp. 265–283.

[8] T. S. Freeman and F. Pfenning, “Refinement types for
ML,” in ACM SIGPLAN’91 Conference on Programming
Language Design and Implementation (PLDI), D. S. Wise,
Ed. ACM, 1991, pp. 268–277.

[9] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and
S. Peyton-Jones, “Refinement types for haskell,” in ACM
SIGPLAN Notices, vol. 49, no. 9, 2014, pp. 269–282.

[10] P. M. Rondon, A. Bakst, M. Kawaguchi, and R. Jhala,
“Csolve: Verifying C with liquid types,” in Computer Aided
Verification - 24th International Conference, ser. Lecture
Notes in Computer Science, P. Madhusudan and S. A.
Seshia, Eds., vol. 7358. Springer, 2012, pp. 744–750.

[11] Chugh R., Herman D., Jhala R., “Dependent Types
for JavaScript,” http://goto.ucsd.edu/∼ravi/research/
oopsla12-djs.pdf, 2012.

[12] A. Dix, J. E. Finlay, G. D. Abowd, and R. Beale, Human-
Computer Interaction (3rd Edition). Prentice-Hall, Inc.,
2003.

[13] M. J. Fonseca, P. Campos, and D. Gonçalves, Introdução
ao Design de Interfaces, 10 2012.

[14] F. Hermans, “Hedy: A gradual language for programming
education,” in ICER 2020: International Computing

11

http://goto.ucsd.edu/~ravi/research/oopsla12-djs.pdf
http://goto.ucsd.edu/~ravi/research/oopsla12-djs.pdf

Education Research Conference, A. V. Robins, A. Moskal,
A. J. Ko, and R. McCauley, Eds. ACM, 2020, pp. 259–
270.

[15] M. J. Coblenz, G. Kambhatla, P. Koronkevich, J. L. Wise,
C. Barnaby, J. Sunshine, J. Aldrich, and B. A. Myers,
“PLIERS: A process that integrates user-centered methods
into programming language design,” ACM Trans. Comput.
Hum. Interact., vol. 28, no. 4, pp. 28:1–28:53, 2021.

[16] M. J. Coblenz, W. Nelson, J. Aldrich, B. A. Myers,
and J. Sunshine, “Glacier: transitive class immutability
for java,” in 39th International Conference on Software
Engineering, S. Uchitel, A. Orso, and M. P. Robillard,
Eds. IEEE / ACM, 2017, pp. 496–506.

[17] M. J. Coblenz, J. Aldrich, B. A. Myers, and J. Sunshine,
“Can advanced type systems be usable? an empirical study
of ownership, assets, and typestate in obsidian,” Proc.
ACM Program. Lang., vol. 4, no. OOPSLA, pp. 132:1–
132:28, 2020.

[18] M. Fähndrich and K. R. M. Leino, “Declaring and
checking non-null types in an object-oriented language,”
in 2003 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, OOP-
SLA 2003, R. Crocker and G. L. S. Jr., Eds. ACM, 2003,
pp. 302–312.

[19] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon,
and C. Jaspan, “Lessons from building static analysis tools
at google,” Commun. ACM, vol. 61, no. 4, pp. 58–66,
2018.

[20] L. N. Q. Do, J. R. Wright, and K. Ali, “Why do software
developers use static analysis tools? a user-centered study
of developer needs and motivations,” IEEE Transactions
on Software Engineering, vol. 48, no. 3, pp. 835–847,
2022.

[21] G. Morling, “Jakarta bean validation specification.”
2019. [Online]. Available: https://jakarta.ee/specifications/
bean-validation/2.0/bean-validation 2.0.pdf

[22] M. M. Papi, M. Ali, T. L. C. Jr., J. H. Perkins, and
M. D. Ernst, “Practical pluggable types for java,” in
ACM/SIGSOFT International Symposium on Software
Testing and Analysis, B. G. Ryder and A. Zeller, Eds.
ACM, 2008, pp. 201–212.

[23] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera,
and L. Seinturier, “SPOON: A library for implementing
analyses and transformations of java source code,” Softw.
Pract. Exp., vol. 46, no. 9, pp. 1155–1179, 2016.

[24] D. H. Ken Arnold, James Gosling, THE Java™ Pro-
gramming Language, Fourth Edition. Addison Wesley
Professional, 2005.

[25] J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks,
“Typestate-oriented programming,” in Companion to the
24th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Appli-
cations, S. Arora and G. T. Leavens, Eds. ACM, 2009,
pp. 1015–1022.

[26] Microsoft, “Language server protocol,” 2022.
[Online]. Available: https://microsoft.github.io/

language-server-protocol/
[27] A. J. Ko, T. D. LaToza, and M. M. Burnett, “A practical

guide to controlled experiments of software engineering
tools with human participants,” Empir. Softw. Eng., vol. 20,
no. 1, pp. 110–141, 2015.

[28] R. P. L. Buse, C. Sadowski, and W. Weimer, “Benefits
and barriers of user evaluation in software engineering
research,” in 26th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, C. V. Lopes and K. Fisher, Eds. ACM,
2011, pp. 643–656.

[29] J. Lubin and S. E. Chasins, “How statically-typed
functional programmers write code,” Proc. ACM
Program. Lang., vol. 5, no. OOPSLA, pp. 1–30, 2021.
[Online]. Available: https://doi.org/10.1145/3485532

[30] K. Thayer, S. E. Chasins, and A. J. Ko, “A theory of
robust API knowledge,” ACM Trans. Comput. Educ.,
vol. 21, no. 1, pp. 8:1–8:32, 2021. [Online]. Available:
https://doi.org/10.1145/3444945

[31] S. Hanenberg, S. Kleinschmager, R. Robbes, É. Tanter,
and A. Stefik, “An empirical study on the impact of static
typing on software maintainability,” Empir. Softw. Eng.,
vol. 19, no. 5, pp. 1335–1382, 2014.

[32] C. Mayer, S. Hanenberg, R. Robbes, É. Tanter, and
A. Stefik, “An empirical study of the influence of
static type systems on the usability of undocumented
software,” in 27th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages,
and Applications, G. T. Leavens and M. B. Dwyer, Eds.
ACM, 2012, pp. 683–702.

[33] B. Ellis, J. Stylos, and B. A. Myers, “The factory pattern in
API design: A usability evaluation,” in 29th International
Conference on Software Engineering. IEEE Computer
Society, 2007, pp. 302–312.

[34] J. Stylos and B. A. Myers, “The implications of method
placement on API learnability,” in 16th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, M. J. Harrold and G. C. Murphy, Eds. ACM,
2008, pp. 105–112.

[35] P. M. Uesbeck, A. Stefik, S. Hanenberg, J. Pedersen, and
P. Daleiden, “An empirical study on the impact of C++
lambdas and programmer experience,” in International
Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, May 14-22, L. K. Dillon, W. Visser, and L. A.
Williams, Eds. ACM, 2016, pp. 760–771.

[36] M. Coblenz, M. Mazurek, and M. Hicks, “Does the bronze
garbage collector make rust easier to use? a controlled
experiment,” arXiv preprint arXiv:2110.01098, 2021.

[37] J. Saldaña, The Coding Manual for Qualitative Re-
searchers. SAGE Publications, 2009.

[38] N. Vazou, E. L. Seidel, and R. Jhala, “Liquidhaskell:
experience with refinement types in the real world,” in
2014 ACM SIGPLAN symposium on Haskell, Gothenburg,
Sweden, September 4-5, 2014, W. Swierstra, Ed. ACM,
2014, pp. 39–51.

[39] M. Kazerounian, N. Vazou, A. Bourgerie, J. S. Foster, and

12

https://jakarta.ee/specifications/bean-validation/2.0/bean-validation_2.0.pdf
https://jakarta.ee/specifications/bean-validation/2.0/bean-validation_2.0.pdf
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://doi.org/10.1145/3485532
https://doi.org/10.1145/3444945

E. Torlak, “Refinement types for ruby,” in Verification,
Model Checking, and Abstract Interpretation - 19th
International Conference, ser. Lecture Notes in Computer
Science, I. Dillig and J. Palsberg, Eds., vol. 10747.
Springer, 2018, pp. 269–290.

[40] R. Chugh, D. Herman, and R. Jhala, “Dependent types for
javascript,” in 27th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages,
and Applications, G. T. Leavens and M. B. Dwyer, Eds.
ACM, 2012, pp. 587–606.

[41] G. S. Schmid and V. Kuncak, “Smt-based checking of
predicate-qualified types for scala,” in 7th ACM SIGPLAN
Symposium on Scala, SCALA@SPLASH, A. Biboudis,
M. Jonnalagedda, S. Stucki, and V. Ureche, Eds. ACM,
2016, pp. 31–40.

[42] P. Vekris, B. Cosman, and R. Jhala, “Refinement types
for typescript,” in 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI 2016, C. Krintz and E. Berger, Eds. ACM, 2016,
pp. 310–325.

[43] B. Stein, L. Clapp, M. Sridharan, and B. E. Chang, “Safe
stream-based programming with refinement types,” CoRR,
vol. abs/1808.02998, 2018.

[44] W. Ahrendt, B. Beckert, D. Bruns, R. Bubel, C. Glad-
isch, S. Grebing, R. Hähnle, M. Hentschel, M. Herda,
V. Klebanov, W. Mostowski, C. Scheben, P. H. Schmitt,
and M. Ulbrich, “The key platform for verification and
analysis of java programs,” in Verified Software: Theories,
Tools and Experiments - 6th International Conference, ser.
Lecture Notes in Computer Science, D. Giannakopoulou
and D. Kroening, Eds., vol. 8471. Springer, 2014, pp.
55–71.

[45] B. Beckert and S. Grebing, “Evaluating the usability of
interactive verification systems,” in 1st International Work-
shop on Comparative Empirical Evaluation of Reasoning
Systems, Manchester, United Kingdom, June 30, 2012, ser.
CEUR Workshop Proceedings, V. Klebanov, B. Beckert,
A. Biere, and G. Sutcliffe, Eds., vol. 873. CEUR-WS.org,
2012, pp. 3–17.

[46] B. Beckert, S. Grebing, and F. Böhl, “A usability evalua-
tion of interactive theorem provers using focus groups,” in
Software Engineering and Formal Methods - SEFM 2014
Collocated Workshops: HOFM, SAFOME, OpenCert,
MoKMaSD, WS-FMDS, Grenoble, France, September 1-
2, 2014, Revised Selected Papers, ser. Lecture Notes in
Computer Science, C. Canal and A. Idani, Eds., vol. 8938.
Springer, 2014, pp. 3–19.

[47] G. F. Kadoda, “A cognitive dimensions view of the
differences between designers and users of theorem
proving assistants,” in 12th Annual Workshop of the
Psychology of Programming Interest Group, PPIG 2000,
Cosenza, Italy, April 10-13, 2000. Psychology of
Programming Interest Group, 2000, p. 9.

[48] K. Aksoy, S. Tahar, and Y. Zeren, “Introduction to hol4
theorem prover,” Sigma Journal of Engineering and
Natural Sciences, vol. 10, no. 2, pp. 237–243, 2019.

[49] G. T. Leavens, A. L. Baker, and C. Ruby, “JML: a Java
modeling language,” in Formal Underpinnings of Java
Workshop (at OOPSLA’98). Citeseer, 1998, pp. 404–420.

13

	Introduction
	LiquidJava Design
	Requirements
	Syntax Survey
	LiquidJava Features
	IDE Integration

	User Study
	Study Configuration
	Background of Participants
	Exercises and Results
	Interpreting Refinements without prior explanation
	Using LiquidJava to Detect Bugs
	Adding LiquidJava Annotations
	Final Comments

	Study Conclusions
	Threats to Validity

	Related Work
	Conclusion and Future work

