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Abstract— Testing robotic and cyberphysical systems in sim-
ulation require specifications of the simulated environments
(i.e., scenes). The Scenic domain-specific language provides
a high-level probabilistic programming language that allows
users to specify scenarios for simulation. Scenic automatically
generates concrete scenes that can be rendered by simulators.
However, Scenic is mainly designed for autonomous vehicle
simulation and does not support the most popular general-
purpose simulator: Gazebo. In this work, we present GzScenic;
a tool that automatically generates scenes for simulation in
Gazebo. GzScenic automatically generates both the models
required for running Scenic on the scenarios, and the models
that Gazebo requires for running the simulation.

I. INTRODUCTION

As robots are deployed to new environments with greater
levels of autonomy, inevitable software defects may lead
to unintentional and potentially catastrophic outcomes. It is
now more important than ever to systematically test robotic
systems as extensively as possible to identify and eliminate
defects before those systems are deployed to the field.

Prior studies have suggested simulation-based testing as
a promising technique for revealing defects that is vastly
cheaper, safer, and more scalable than field testing [1]–[5].
While simulation suffers from certain limitations and only
provides an abstraction of the physical world [6], it allows
systems to be systematically tested under a wide array of
environments, conditions, and scenarios that would otherwise
be difficult or expensive to replicate in the field.

A crucial aspect of simulation-based testing is the gener-
ation of interesting, potentially fault-revealing scenarios that
expose the system to corner cases and undertested inputs.
We define a scenario as the description of a scene (i.e., the
environment) and an accompanying mission that the system
under test (SUT) should perform in the specified scene.
Manually generating such scenes and missions can be time
consuming and difficult [6].

In recent years, researchers have proposed tools and
domain-specific languages (DSLs) to facilitate the construc-
tion of testing scenarios [7]–[9]. One of the most prominent
such DSLs is Scenic [7], a language designed for creating
simulation scenarios for autonomous vehicles. Using Scenic,
users can describe a scenario of interest for the SUT, which
is automatically parsed by the Scenic tool to generate a
plausible scene and mission that satisfy the user-specified
constraints of that scenario. The generated scene and mission
are then executed in the supported simulators to execute the
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ego = Car

spot = OrientedPoint on visible curb
badAngle = Uniform(1.0, -1.0) * Range(10, 20)

deg
parkedCar = Car left of (spot offset by -0.5 @

0), facing badAngle relative to
roadDirection

(a) A scenario description, written in the Scenic language,
detailing a scene that contains a badly parked car.

(b) A scene that was generated by Scenic according to the
scenario above using the GTA V engine [7].

Fig. 1: An exemplary Scenic scenario, and the generated simulation
scene.

test. Figure 1 shows an example scenario that is realized in
the GTA V [10] simulator.

Although Scenic provides a powerful language and tool
that simplifies the process of creating and running simulated
test scenarios, it only supports domain-specific simulators in
the autonomous vehicle sector, and is not compatible with
Gazebo; the most popular, general-purpose robotic simula-
tor [11]. Gazebo is commonly used for simulation of systems
developed using the popular Robot Operating System (ROS)
framework [12], and has been applied to robots that span a
wide variety of sectors such as unmanned aerial and ground
vehicles, agriculture robots, and industrial robots.

In this work, we introduce GzScenic; a tool that automati-
cally generates simulation scenes in Gazebo from a scenario
provided in Scenic’s DSL. Using GzScenic, developers can
specify their desired testing scenarios in Scenic’s DSL with-
out the need to manually pre-define their models in Scenic,
and automatically generate complex scenes that satisfy the
constraints of their scenario. GzScenic automatically trans-
fers the generated scenes to Gazebo without the need for
manual translation. Furthermore, to support test automation
for mission-based robots, GzScenic can synthesize mission



items (e.g., waypoints, action locations, the initial position of
a robot) as part of a test scenario. These mission items can be
combined with a generated scene via a developer-provided
test harness to allow automated end-to-end testing (e.g., by
spawning the robot at a given initial location, sending it a
generated set of waypoints, and monitoring its progress).

The contributions of this papers are as follows:
• We introduce GzScenic; a tool that allows users of the

popular Gazebo simulator to describe test scenarios in
a the Scenic high-level DSL and automatically generate
the scenes and missions for the test.

• We provide an example of using GzScenic for the Fetch
robot [13].

• We publicly release GzScenic’s source code and
the example scenarios at https://github.com/
squaresLab/GzScenic.

II. BACKGROUND

A. Scenic

In this section, we provide a high-level overview of the
structure and important features of Scenic [7]. We refer the
reader to the original Scenic paper for further details [7].
Scenic is a domain-specific probabilistic programming lan-
guage for modeling the environments of robotic and cyber-
physical systems such as autonomous cars. A Scenic program
(i.e., scenario) defines a distribution over scenes, configu-
rations of physical objects and agents; sampling from this
distribution yields concrete scenes which can be simulated
by the supported simulators. Figure 1 presents an example
Scenic scenario and a concrete scene produced from that
scenario using the GTA V engine.

Overall, Scenic accepts a pre-defined set of models1 that
define everything specific to a particular simulator and SUT.
For example, in Figure 1, two instances of the Car model
are created. A portion of the pre-defined Car model is as
follows:

class Car:
position: Point on road
heading: roadDirection at self.position
viewAngle: 80 deg

which specifies that the position of a Car is a point on a
region called road that is defined separately and represents
the roads in the GTA map. The car’s heading is the same as
the roadDirection that is the nominal traffic direction
at a point on the road, and its viewAngle is 80 degrees.

To allow Scenic to parse scenarios and generate concrete
scenes, a model must be defined for each entity that can be
represented within a given scene. A concrete scene consists
of a set of instantiated models, known as objects, with
concrete values as their properties. Scenic automatically
determines the spatial relationships between objects in the
scene such that they conform to the specifications of the
scenario and do not collide with each other.2 Scenic arranges
objects in the scene by treating each objects as a bounding

1Referred to as Classes in Scenic’s documentation.
2Users may override this behavior to allow collisions between objects.

rectangle on a two-dimensional plane. At the time of writing,
Scenic is unable to arrange objects in three dimensions.

In addition to specifying spatial relationships between
objects within a scene, Scenic can model temporal aspects
of scenarios. For example, in Figure 1, we can not only
specify where the badly parked car is located, but also how
it should behave over time (e.g., “pulls into the road as
the ego car approaches”). However, modeling the dynamic
scenarios requires direct connection between Scenic and
the simulator, and more complex modeling of active agents
and their behaviors. Since defining these connections and
models are system- and domain-specific, we only focus on
generating static scenes for the rest of the paper.

At the time of writing, Scenic is compatible with GTA
V [10], CARLA [14], Webots [15], and LGSVL [16] simula-
tors specifically used in the autonomous vehicle sector,3 and
does not support Gazebo; the most popular general-purpose
simulator. Pre-defining Scenic models for a general-purpose
simulator that is commonly used in a wide range of domains
is nearly impossible since each domain requires its own set of
models. GzScenic allows the user to automatically generate
these models by providing a high-level description.

B. Gazebo

Gazebo is a popular, general-purpose robotics simulator
[11], [17], maintained by Open Robotics, that has been used
in a wide variety of domains and is the de facto simulation
platform used by ROS.

Running a Gazebo simulation requires several compo-
nents [18]. First of all, a world description file should be
provided that describes all the elements in a simulation,
including its objects, robots, sensors, and light sources. This
file typically has a .world extension and uses the XML-
based Simulation Description Format (SDFormat) [19] to
describe those elements.

Included within the world file are model instances, given
by <model> elements, which may be defined directly in
the world file, or, more commonly, included separately by
external model files via the <include> tag. Defining the
model files allow the model to be easily reused among many
worlds. Gazebo model files also follow the SDFormat, and
define all of the components related to modeling an entity
such as joints, collisions, visuals, and plugins.

Included within the components of a model are its collision
geometries, given by <collision> tags, which are used
by Gazebo for collision checking. These geometries can take
on simple shapes such as a box, cylinder, or sphere, or they
can include more complex shapes specified by 3D mesh files,
which can take one of the three supported formats of STL,
Collada or OBJ, with Collada and OBJ being the preferred
formats.

III. GZSCENIC

The goal of GzScenic is to convert a test scenario, written
in Scenic language, to a set of files and models that can

3A simple set of pre-defined models for a Mars rover in Webots are also
included in Scenic [7].
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Fig. 2: An overview of GzScenic internal process. Orange ovals represent input provided by the user, purple ovals are internal products,
and green ovals are the produced outputs. Rectangles represent the three steps taken by GzScenic.

be used by Gazebo. Figure 2 provides an overview of
GzScenic’s inputs, outputs, and internal steps. GzScenic
takes a high-level model descriptor YAML file, a set of
custom models, and a Scenic scenario as inputs, and performs
three steps to achieve its goal. Firstly, it automatically
generates Scenic models from the model descriptor YAML
and the custom models (Section III-A). It then passes the
generated Scenic models and the input scenario to the Scenic
tool, and generates a concrete scene (Section III-B). Finally,
it translates the generated scene into a format that is suitable
for Gazebo (Section III-C).

We provide a running example of generating a scene
for the popular open-source Fetch robot [13]. More ex-
amples of GzScenic inputs and scenarios can be found
in the tool’s repository at https://github.com/
squaresLab/GzScenic. In this example, our goal is to
create a scene for Fetch that resembles a pick and place
playground.4 Throughout the rest of this section, we explain
how GzScenic achieves this goal.

A. Model Generation

models:
- name: fetch
type: MISSION_ONLY
width: 0.57
length: 0.53
heading: -1.57

- name: waypoint
type: MISSION_ONLY

- name: cafe_table
type: GAZEBO_MODEL

- name: bookshelf
type: GAZEBO_MODEL

- name: LampAndStand
type: GAZEBO_MODEL

- name: demo_cube
type: CUSTOM_MODEL
dynamic_size: False

models_dir: models/
world: empty_world.world

Fig. 3: An example model descriptor YAML file for Fetch.

As discussed in Section II-A, parsing a scenario in Scenic
language and generating a valid concrete scene requires a set
of model definitions that should be provided to Scenic. These

4Pick and place is an act of picking an object, moving it to another
location, and placing it at the destination.

models should describe all entities that can be included in
a scenario. For example, in self-driving applications these
models may include entities such as cars, roads, and pedes-
trians. Scenic provides some of the models out of the box
for self-driving applications, which are its primary domain.

Since Gazebo is a general-purpose simulator that is used
in a wide range of domains, it is nearly impossible to pre-
define Scenic models that describe the entities required for
simulation of all systems in different sectors. For example, an
agricultural robot requires modeling of entities such as plants
and tractors, whereas a warehouse robot requires modeling of
the shelves, boxes, and rooms. In comparison, defining these
models for a domain-specific simulator such as GTA V and
CARLA requires a one-time investment since most of the
entities that can be simulated and included in the scenarios
are shared among all systems that use these simulators. For
example, if models are produced for CARLA in order to test
a given system, those same models may be reused in another
system with minimal effort.

GzScenic allows Gazebo users to easily create Scenic
models by automatically generating them from a set of
Gazebo models, provided as .sdf and 3D mesh (e.g., .dae,
.obj, .stl) files, as described in Section II-B. To perform
this conversion, GzScenic requires that the user to provide
a list of the models that may be used in generated scenes
via the YAML model descriptor file, illustrated in Figure 3.
The description of each model in the file should specify its
name, and its type. The three model types, described below,
inform GzScenic of how it should access the Gazebo models
(if required).

• GAZEBO MODEL: By default, Gazebo comes prepack-
aged with a common database of models.5 In addition to
this database, Ignition Fuel web application hosts thou-
sands of Gazebo models publicly released by users.6

Models of type GAZEBO MODEL refer to these models.
GzScenic automatically downloads all the files related
to models of this type from the model distribution
according to the provided name.

• CUSTOM MODEL: Models of this type are not standard
Gazebo models. They are either made by the user for
their own use, or should be downloaded from a custom
source. In the former case, GzScenic looks for the
Gazebo model files in the models dir directory spec-

5https://github.com/osrf/gazebo_models
6https://app.ignitionrobotics.org/fuel/models
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ified by the model descriptor file, and in the later case,
GzScenic downloads the files from the URL provided
by the tag url in the YAML file.

• MISSION ONLY: Models of this type include any en-
tities in the scenarios that do not map to a simulated
object that should be included in the Gazebo .world
file, but are particularly important in generating inter-
esting missions in the scenarios. For example, mission
waypoints are entities that do not represent objects in
the environment, but may be specified in a scenario
to allow missions to be generated and executed by a
test harness. Another example is the robot itself. Robots
are not typically included in the .world file, and are
spawned separately by roslaunch. Therefore, these
robots should not be included in the generated .world
file, but a suitable initial position should be emitted by
GzScenic to allow users to test the robot in different,
valid starting positions. We discuss the use of GzScenic
to generate missions further in Section III-C.

Figure 3 presents an example model descriptor file for
Fetch, describing the models that may be used in a pick
and place scenario. In this list, we have included models
for cafe table, bookshelf, provided out of the box by
the official Gazebo model database, and LampAndStand,
released on Ignition Fuel web application. The Gazebo
model for demo cube is custom-made and provided in the
models/ directory. Finally, we include model descriptions
for the robot and waypoints, fetch and waypoint, as
MISSION ONLY. Note that this is only an example of the
set of models that can be included in the scenarios. Users
can select their preferred models from thousands of available
models, or including their own custom-made models.

To generate corresponding Scenic models for the models
in the model descriptor file, GzScenic automatically deter-
mines a number of features for each model. These features
include a 2D bounding box,7 given by a length and
width, and a flag, dynamic size, indicating whether or
not the model can be dynamically resized. To determine
the length and width of a model, GzScenic computes
a bounding box for each individual collision geometry spec-
ified in the .sdf file, before determining a bounding box
for the entire model. Note that GzScenic supports 5 of the
9 types of collision geometry that can be represented using
SDF [19]: empty, box, cylinder, sphere, and mesh.
Of the 283 models that are prepackaged with Gazebo, only
12 use a geometry that is not supported by GzScenic.

After calculating the bounding box of the model, GzScenic
determines whether the model can be resized. For example, a
simple box, a tree, or a wall should be allowed to be resized
based on what the scenario requires, but a table that consists
of multiple parts (e.g., surface and legs), a robot model, or a
stop light should not be resized since they are not scalable in
the real world. As a rule of thumb, GzScenic allows dynamic
resizing down to half or up to twice the original size of
the models if they only consist of a single simple collision

7Recall that Scenic treats all models as 2D rectangles.

width = 8
length = 8
heading = 0
workspace = Workspace(RectangularRegion(0 @ 0,

heading, width, length))

create_room(length, width, x=0, y=0, sides=’NSWE’)

ego = Fetch at 0 @ 0

table1 = CafeTable offset by 0 @ 1, facing 0 deg
create_room(3, 2.5, x=-2, y=2, sides=’NSE’)
table2 = CafeTable at -2 @ 2
Bookshelf at Range(-4,4) @ -3.5, facing 180 deg
back_right_region = RectangularRegion(-2 @ -2, 0,

3.5, 3.5)
Lampandstand in back_right_region

Fig. 4: An example scenario for Fetch, written in Scenic.

geometry (i.e., empty, box, cylinder, or sphere). We
made this decision based on the observation that complex
models that include multiple collision geometries or meshes
are more likely to be of standard size and should not be
resized. However, there are exceptions to this rule. As a
result, GzScenic allows the user to override dynamic size
feature of a model in the model descriptor file.

Once all of the models specified in the model descriptor
file are transformed to Scenic models, Scenic can interpret
the input scenario. Note that this model generation step need
only occur once for each system unless the models change.
GzScenic stores generated models for future use.

B. Scene Generation

In this step, GzScenic runs the Scenic interpreter on the
provided scenario description using the models generated in
the previous step. Scenic, if possible, generates a concrete
scene that satisfies the scenario description, and shows a plot
of object arrangements on a 2D plane to the user (Figure 5a).

Figure 4 presents a simple example scenario for the Fetch
robot. In this scenario, we first create a workspace8 with
length and width of 8 meters. Then, using a function provided
by GzScenic, create room, we create walls surrounding the
workspace on all four sides. The rest of the scenario includes
description of the objects and their positioning in the scene,
and creation of a smaller room that has walls on three sides.
The resulting scene plot generated by Scenic is presented
in Figure 5a. The instance in the center of the plot is the
ego, which is the Fetch robot in this scenario. All other
instances are represented as red rectangles. Note that the
position and orientation of 3 of the instances in this scenario
are randomly determined and can take other concrete values
in other scenes.

The output of this step is a concrete scene, that includes
all the objects generated from the models, and their arrange-
ments. Next, we translate this concrete scene into a format
that can be used by Gazebo.

8A workspace in Scenic language specifies the region the objects must
lie within.



C. Gazebo Translation

This final step of GzScenic accepts a concrete scene as
an input, and translates this scene into a) Gazebo world
and models that allow us to simulate the scene in Gazebo,
and b) a YAML file listing the position and orientation
of MISSION ONLY objects, which can facilitate automated
creation of test missions.

a) Gazebo world and models: As mentioned in Sec-
tion II-B, Gazebo components include a world file (usually
with .world extension) and a set of models in the form
of .sdf files, mesh files, and configuration files [18]. In
this step, GzScenic translates a concrete scene description to
corresponding Gazebo .world and model files. To do so,
GzScenic starts from an empty world environment, which, by
default, includes only a ground plane, and adds every object
in the concrete scene to this world one by one. The user
can provide a customized empty world to GzScenic where
they can configure different aspects of the world such as its
lighting, shadowing, and physics engine.

For every object in a concrete scene, GzScenic determines
the elements that must be added to the world file, and the
files that need to accompany the generated world. For all ob-
jects generated from a GAZEBO MODEL or CUSTOM MODEL,
GzScenic adds those objects to the world file via the
<include> tag. Additionally, GzScenic generates the nec-
essary Gazebo model files for each individual object where
the collision geometries must be updated to reflect the
dynamically-determined size of the object.

At the end of the process, the user ends up with a world
file and a set of models. If GzScenic is running on the same
system as Gazebo, the user can specify the output directory in
such a way that Gazebo can immediately find the GzScenic’s
outputs. Note that the path to the models directory can be
passed to Gazebo via the GAZEBO MODEL PATH environ-
ment variable. If GzScenic is not running on the same system
as Gazebo, the user must transfer the output of GzScenic to
the system that hosts Gazebo.

In our example scenario (Figure 4), GzScenic automati-
cally translates the concrete scene plotted in Figure 5a to a
Gazebo simulation presented in Figure 5b. As shown, the
position and orientation of the objects in this simulation are
aligned with the generated plot, and the description provided
in the scenario of Figure 4.

b) Mission-only objects YAML: Let us refer back to
the example scenario of Figure 4 for the Fetch robot. Our
ultimate goal in this case is to test Fetch in a scene that
is generated from our example scenario. Simply launching
Fetch in the automatically-generated Gazebo simulation (Fig-
ure 5b) will not test the system as it is not performing
any operations. The system should receive a mission (i.e.,
a set of instructions to perform actions) to be tested in this
environment. For example, a mission for Fetch can instruct
the robot to pick an object from the table, move to another
room, and place the object on the other table.

A scenario may include information about the mission
that should be performed in the generated scene. For ex-

ample, in the scenario of Figure 4, we can add instances of
waypoints that reflect where the robot should move to:

Waypoint in back_right_region
Waypoint ahead of table2 by 1

GzScenic automatically generates position and orientation
for these instances. However, since their model type is
MISSION ONLY it does not include these objects in the
Gazebo simulation. Instead, it outputs a YAML file that
lists the position and orientation of each one of these
MISSION ONLY objects, grouped by their type:

fetch:
- heading: -1.57
x: 0
y: 0
z: 0.0

waypoint:
- heading: 4.521433387130848
x: -0.6426244725245782
y: -0.7777737656890915
z: 0.0

- heading: 2.2663887353720784
x: -2.7676780355847423
y: 1.3591564670641116
z: 0.0

Since the definition of the missions and how they are
executed are system-specific, there is no generic way to
convert this list of coordinates to a running mission that will
work on all systems. However, we believe that users can
easily read this output file to automatically generate their
intended missions using a custom test harness.

IV. LIMITATIONS

As mentioned in Section II-A, Scenic is only capable of
generating 2D scenes and cannot arrange objects in the scene
in a 3D environment. This creates a limitation for GzScenic
as well for scenarios that for example require multiple objects
stacked on top of each other.

While resolving this limitation is out of the scope for
GzScenic, there is a workaround that will allow users to
stack objects on top of each other in GzScenic. GzScenic
by default keeps track of the height and z coordinate of
the objects. This information has no impact on the scene
that is generated by Scenic but is used during the Gazebo
translation step to create Gazebo models. To stack two
objects on top of each other, the user need to properly set the
z value of the objects, and allow them to collide by setting
allowCollisions to True. In the example scenario of
Figure 4, we can place a cube on the table by adding the
following lines to the scenario:

table.allowCollisions = True
cube = Cube at table.position, with allowCollisions

(True)
cube.z = table.height + cube.height

Note that this is only a temporary workaround until handling
3D positions is added to Scenic.

Another limitation of GzScenic that arises from Scenic
features is the fact that all objects are considered as rect-
angles in the 2D space. As a result GzScenic computes



(a) 2D plot generated for the concrete scene. (b) Gazebo simulation of the generated scene.

Fig. 5: An example of the scene generated for the Fetch robot reflecting the scenario of Figure 4.

the bounding box of models as described in Section III-
A. However, the bounding box of a model is not always
truly representative of the space that the model is going to
take. For example, imagine a hoop that is hollow inside. The
bounding box of this hoop will be considered as a square
surrounding its circumference, and the hoop is treated the
same as a solid box by Scenic. However, we may want to
allow an object to be placed in the center of the hoop, which
is currently not allowed. To partially mitigate this issue, we
plan to improve GzScenic to break large models (e.g., model
of a house) into smaller ones instead of creating a bounding
box for the whole model.

V. CONCLUSION

In this work we present GzScenic, a tool that automatically
generates scenes for the Gazebo simulation from scenarios
provided in the Scenic language. GzScenic allows the users
to simply specify a list of models they intend to use in
the simulation, and it automatically turns these models into
models that are interpretable by Scenic. Using these models,
Scenic generates a scene from the scenario, which later on
is automatically converted to Gazebo models by GzScenic.
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