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Abstract— Neural network models have emerged over the last
decade as the standard for perception in many robotic systems.
While powerful, these models are opaque and practitioners
often rely on empirical evaluation using standard metrics and
held-out test sets to understand their performance. However,
such model-level testing ignores how the outputs of perception
models will be used in downstream components within a
robotic system. In this work, we create a new family of object
detection metrics that can accurately evaluate performance
when detectors are used for object tracking in a robotic system.
We show that mean Average Precision (mAP), arguably the
most common metric for evaluating object detectors, does not
strongly correlate with tracking performance. We propose an
alternative metric,c MATCH’N METRIC, that makes few, simple
assumptions about downstream tracking algorithms and does
not require the implementation of a tracker to compute. We
show empirically that across a number of object detection
models and tracking algorithms that MATCH’N METRIC more
accurately correlates with tracking performance than mAP.
Equipped with this metric, practitioners can better evaluate
object detectors for their ability to be used in robotic systems
that require object tracking.

I. INTRODUCTION

Perception in modern autonomous systems is largely
driven by machine learning; specifically by deep neural
network models. These models take high-dimensional sensor
outputs, such as images, and produce inferences about those
outputs, such as a labeling of all the pixels (semantic
segmentation) or the location and class of objects (object
detection) within the image. In turn, inferences made by ML
models are consumed by other software components within
the autonomous system. Components within the sense-plan-
act cycle of modern autonomy [1], like planners and trackers,
are commonly reliant on the outputs of ML-based perception
models to perform reasoning tasks that are key to overall
system performance.

Though ML models provide state-of-the-art perception
capabilities, they also pose significant challenges in test
and evaluation. Many of the standard software engineering
approaches used to evaluate code (e.g., code review and
static analysis) cannot be directly applied to neural network
models whose parameters have no intuitive interpretation [2].
Instead, engineers often rely on empirical testing where
models are evaluated using standard metrics against data
held-out from training. While this gives quantitative evidence
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about how the model can perform, it does not inform how
a model will affect downstream components. For instance, a
model may fail to detect an object every other frame of a
video, which would result in poor model evaluation, but a
downstream tracker may still be able to accurately predict
the track of the object. This highlights the potential for
discrepancy between how the model was evaluated and its
performance in the task it is meant to feed if larger system
context is not considered.

In this work, we aim to more closely couple ML model
evaluation with the downstream tasks that they are meant
to facilitate. More specifically, we focus on the common
case in robotics where object trackers are reliant on ML-
based object detection models. We show that one of the
most common metrics to evaluate object detection perfor-
mance, Mean Average Precision (mAP), is often not cor-
related with tracking performance when model inferences
are used as input to tracking algorithms. We propose an
alternative metric based on very simple tracking assumptions
that 1) correlates strongly with tracking performance, and
2) generalizes to different choices of downstream tracking
algorithms. In doing so, we provide a new model evaluation
metric, MATCH’N METRIC, that can be used to determine
how fit an object detection model is for tracking, without
burdening engineering teams with fully developing down-
stream tracking components or perform costly full system
testing.

In this paper, we make the following contributions:

I. We perform an evaluation across 17 object detection
models, 4 trackers, and 3 tracking metrics and show
that common model-level object detection metrics, such
as mAP, can result in a relative ranking of models that
does not correlate to the relative performance of models
when used for tracking.

II. Based on this observation, we develop a new family of
metrics for tracker-free evaluation of object detection
models in the context of object tracking. These metrics
are based on few, simple assumptions about downstream
trackers, but much more closely model how detectors
will be used for tracking.

III. We empirically validate our metrics across the same
object detection models, trackers, and tracking metrics
as before and show that they are much better indicators
of tracking performance than common object detection
metrics.

Our approach facilitates model selection, development,



and refinement earlier in the engineering process (before
a tracker has been selected and developed), without the
inaccuracy that comes from the conventional approach of
using model-level metrics.

Code used in our experiments is available at https:
//github.com.squaresLab/MatchnMetric/
tree/mainl

II. BACKGROUND & RELATED WORK
A. Object Detection and Tracking

The system class that we focus on is object tracking from a
monocular camera system. We briefly provide an explanation
of this system class and related work in this section.

Object Detection: A standard machine learning compo-
nent is an object detector. As their input, detectors consume
images, generally grids of floating point values representing
the scene in front of a camera or other sensor. They produce
lists of bounding boxes, axis-aligned rectangles in image
pixel coordinates that are intended to fully enclose the pixels
representing an object of interest. These bounding boxes may
be extended with additional values indicating a classification
and/or confidence. In this work, we filter out classifications
to only our class of interest, Person. We also make use of a
floating point confidence value, which represents something
akin to likelihood of being this class under the training data
distribution.

As a standard component, there are libraries of object
detection models (e.g., [3], [4]) that have been pretrained
on different public datasets (e.g., COCO [5]). While these
pretrained models can be used off-the-shelf to detect certain
classes of objects (represented in their training data) in
general images, they often require fine-tuning to be suitable
for many real-world applications.

Multi-Object Tracking: Object detectors are frequently
used as components in a Multi-Object Tracking (MOT) sys-
tem. MOT systems generally consume sensor data over time
and produce a list of object detections for each sensor reading
with an association between the most recent detections and
previous detections (i.e., a tracking of objects over time).
We focus on MOT in videos from monocular cameras, but
many other sensors are commonly used for the detector, such
as radar. Generally, these algorithms are expected to describe
when a previously unseen object enters view, where it moves
in the view, and when it leaves the view. We focus on trackers
that rely on object detection bounding boxes (i.e., tracking
by detection), but trackers that rely on images directly or on
other ML components also exist [6].

B. Perception Evaluation

In this section we collect some of the related work in
evaluation, including a brief overview of detector evaluation,
tracker evaluation, and overall perception system evaluation.

1) Detection Evaluation: As a relatively mature compo-
nent, object detection models are generally evaluated against
metrics on data similar to their expected deployment domain.
In the absence of a deployment domain, they are evaluated on
standard benchmarks like COCO [5]. There are four common

errors for an individual labeled bounding box that metrics are

designed to summarize.

Missed Detections: no bounding box produced for object.

Poor Localization Accuracy: bounding box produced near
object, with no other object it matches.

False Positive: bounding box produced with no nearby ob-
ject present.

Misclassification: bounding box produced, but identified as
different class with no instance of the class nearby.

These types of failures are summarized by metrics that
are computed and compared to evaluate model performance.
These metrics are often defined as part of an open challenge
in object detection performance, such as the PASCAL Visual
Object Classes Challenge [7] and COCO [5]. Each of these
challenges came with a definition of performance based
on an area under the Precision-Recall curve for detections
matched to ground truth labels, referred to as a mean Average
Precision (mAP). These metrics were not designed around a
particular application.

In this work, we also discuss the notion of robustness in
object detection. We consider robustness to refer to the worst-
case performance under a list of possible image perturbations
or degradations. Previously, we looked at robustness in object
detection in the context of collision avoidance systems [8].
Others have also been examining robustness for detection in
autonomous vehicle contexts [9], [10].

2) MOT Evaluation: MOT, as a superset of object detec-
tion, is able to make the same errors and additionally make
association failures. Association failures include:

False Association: declaring a detection to be associated
with a past object where it should not.

Missed Association: declaring a detection to have no asso-
ciation with past objects.

This set of 6 error types are summarized into different
MOT metrics, such as HOTA, MOTA, and IDF1 [6]. Prior
work has shown that these three metrics may only be weakly
correlated with each other, as they each trade off these error
types differently [6]. Additionally, prior work has also shown
that when choosing a detector in a MOT system, the ranking
for models under detector metrics may not be preserved
when using those models in the same tracker under tracking
metrics.

3) Other Work in System Level Perception V&V: One
group used human in the loop testing, where humans could
correct model output in order to estimate possible improvent
to system-level performance [11]. In previous work, we
have shown that, for autonomous systems performing object
detection for collision avoidance in autonomy, model-level
failure rates do not necessarily correlate with system/task
failure rates [8]. We also demonstrated a similar result
for keypoint detection for pose estimation [12]. Finally,
we examined system level performance in the context of
semantic segmentation model testing in simulation [13].

III. APPROACH

In this work, we examine the quality using model-level
metrics (e.g., COCO mAP) to inform model selection for
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the downstream task of tracking. We compare it to the
ranking of models when used in actual trackers, and we
also demonstrate an example of evaluating only a model
with a simple heuristic to get much better model ranking
on tracking performance. We introduce the simple idea of a
MATCH’N METRIC, a metric that uses additional information
in the ground truth in order to evaluate what a machine
learning model is capable of in the context of system-level
performance.

Our approach is straightforward: assume a perfect tracker.
Like in VOC mAP [7] detector evaluation, we match the
ground truth labels to the detections. We use standard Hun-
garian matching with an IoU threshold of 0.5 to match de-
tection bounding boxes to label bounding boxes, maximizing
total confidence. Instead of computing a detector score with
these matched detections, we copy the ground truth track
IDs into the matched detections (discarding any detections
without a ground truth match). We can then calculate a
tracker level metric (e.g., HOTA [6]) directly on the result.
Figure [I]illustrates the data flow for our approach, compared
to detector or full tracker evaluation. Our approach gives an
optimistic/ideal performance of a tracking system using a
given detector model. While this strongly over-estimates the
performance of the tracking system, it does so in a consistent
manner across models, resulting in an accurate proxy metric.

This performs better than standard detector model metrics
at estimating relative system performance; detector metrics
often lead to poor model selection. Additionally, this ap-
proach generalizes across any tracker metric, as it creates an
intermediate that looks like a tracker output. This allows for
better (early) predictions of task performance in the absence
of implementation details (i.e., which tracker is used).

While the driving motivation behind MATCH’N METRIC
is to eliminate the dependency between model development
and tracker development during engineering of the system, it
is notable that MATCH’N METRIC also provides a computa-
tional advantage (c.f. full tracker evaluations), which can be
be particularly consequential if a large number of models
are being evaluated. For example, for HOTA, MATCH’N
METRIC is between 25 to 60 times faster than running the
tracker and computing HOTA.

IV. EVALUATION

To evaluate the effectiveness of our approach, we answer
the following research questions:

RQ1 Do model-level object detection metrics effectively
predict tracking performance?

RQ2 Is MATCH’N METRIC effective at informing detector
model selection in the absence of tracker?

RQ3 Is MATCH’N METRIC an effective predictor of track-
ing metrics in the presence of perturbations?

To answer our questions, we assessed the nominal
and robust performance of 4 trackers (OC-SORT [14],
PKF [15], SORT [16], and ByteTrack [17]) combined with

17 pretrained detector model{] on 74 videos from Person-
Path22 [18], a labeled, multi-person tracking dataset contain-
ing static camera footage from predominantly urban scenes.
We describe our methodology below.

Methodology: Nominal Performance

To assess the effectiveness of proxy measures under
nominal conditions, we first obtained bounding box pre-
dictions from each detector model across all frames in
the dataset. We then used those predictions to measure
the model-level performance of each detector in terms of
COCO style mAP, PASCAL VOC mAP, and a modified
ROC curve (ROCQy) [8]. Next, we fed the predictions from
each model into the different trackers to assess the task-
level (i.e., tracking) performance of 72 detector—tracker pairs
according to three metrics: HOTA (Higher Order Tracking
Accuracy), MOTA (Multi-Object Tracking Accuracy), and
IDF1 (Identification F1 Score) [6].

To determine the best performance of each detector—
tracker pair on each task-level metric, we swept several
values of the detector confidence threshold to find the highest
score for each model. Each evaluation of a metric requires
running the tracker on all bounding boxes above that con-
fidence. These confidence values were generated by taking
20 equal sized quantiles of the set of all confidence values
produced by that model run on all images in the dataset.
This provided a reasonabl tradeoff between resolution and
time to complete. Since OC-SORT, ByteTrack, PKF have
constraints on the minimum allowed confidence threshold,
we discard of the confidence values less than 0.1 as a post-
process. The final score for each detector—tracker pair is
the maximum value achieved across this set of minimum
detection confidence parameters.

Methodology: Robust Performance

To assess model and task robust performance under per-
turbed conditions, we used Gorgon, a custom image mutation
library, to mutate the dataset. We generated 19 variants of
the dataset by applying the mutations described in Table [I]
Figure [2| shows an example of different Gorgon mutations
applied to a single frame from the dataset. We then followed
the same experimental procedure used to determine nominal
performance on each mutated dataset.

We use the results from each dataset to compute robust
versions of each detector and task-level metric. We measure
the area under the Worst-Case curve [8] for metrics involving
two competing signals: ROC'4 and VOC-mAP. For COCO-
mAP, we modify this procedure to account for the different
IoU thresholds; we compute the robust mAP score for each
IoU, then average them, same as nominal COCO-mAP. For
ROC 4, VOC-mAP and COCO-mAP, we generate the robust
area under the curve by finding the worst of each score
(across nominal and all perturbations) at each evaluation

Pretrained  detector models were sourced from
//github.com/Deeplite/deeplite-torch-zoo
https://github.com/ultralytics| [4].

https:
[3] and
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Fig. 1: Illustration of the different dataflow options for evaluating a detector for a tracking system. Either evaluation is on
the detector itself, evaluation is on the final tracker result based on the detector, or in MATCH’N METRIC the evaluation is
on detector results with additional ground truth information.

#  Mutation Name Parameters

1 No Mutation —

2 BrightnessContrast Contrast: 2.0x, Brightness: +100

3 BrightnessContrast Contrast: 1.2x, Brightness: +50

4 BrightnessContrast Contrast: 1.2x, Brightness: 0 .

5  BrightnessContrast Contrast: 0.8x, Brightness: 0 Gaussian Blur

6 ChannelDrop Blue Channel

7  ChannelDrop Green Channel

8  ChannelDrop Red Channel

9  WhiteBalance Red Magnification: 0.8

10 WhiteBalance Red Magnification: 1.2

11 GaussianBlur Blur Strength: 1.5

12 GaussianBlur Blur Strength: 2.0 Channel Drop Lens Scratch Brightness Contrast
13 GaussianBlur Blur Strength: 3.0 . . . .
14 GaussianNoise Seed: 1, Intensity: 10 Fig. 2: Representative examples of different mutations ap-
15 GaussianNoise Seed: 2, Intensity: 10 plied to a single frame from the dataset.

16  GaussianNoise Seed: 3, Intensity: 10

17  GaussianNoise Seed: 1, Intensity: 50

18  GaussianNoise Seed: 2, Intensity: 50

19 GaussianNoise Seed: 3, Intensity: 50 this max-min can differ from the max nominal score.
20  LensScratchMutator ——-

TABLE I: Mutations applied to the dataset.

threshold, creating a new tradeoff curve, then taking the area
under that curve.

For the tracker metrics, since they combine multiple error
types into a single value, we compute the robust version of
the metric as the max-min value over all possible detector
confidence thresholds. This is the maximum score under the
worst case, where you do not know which environment you
will deploy the model in. Fig. [3] shows an illustration of how

Limitations and Threats to Validity

There are limitations to this evaluation. Firstly, we only
demonstrate the issues with mAP on a single dataset of
mono RGB video. Additionally our evaluation only uses
a single class. Both of these could limit the scope of the
conclusion, though we have no reason to believe that any of
these limitations impact the validity of the results.

We note that 15 of the 17 models from are experiment are
YOLO variants. This is because the sources of publicly avail-
able models that we used primarily provided YOLO-based
models. For the two non-YOLO models (DETR variants) in
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Fig. 3: Visual definitions for applications of different metrics
in this work. Curves are not representative of any actual
metric. Similar to our previous work, we define a robust
version of a metric curve as the minimum over the range of
shared confidence values [8]. With compound metrics, like
HOTA, MOTA, and IDF1, the scores are plotted against con-
fidence directly, instead of constructing a tradeoff between
two independent metrics. The robust score is the Max of the
Worst-Case Curve (i.e., the Max-Min over all curves).

our dataset, our conclusions remain the same, but results may
differ for other families of object detectors.

Similarly, all of the trackers in our evaluation are based on
SORT. Due to the limitations of our evaluation environment,
we used only trackers that do not consume images as input
and instead only used detections (i.e., tracking-by-detection
trackers).

V. RESULTS

Figure [] plots the performance of every detector—tracker
pair on the dataset according to different tracking metrics (y-
axis) and proxies (x-axis). Table [[I[] measures the correlation
between each tracking metric and its proxies (i.e., how well
each proxy predicts tracking performance) according to its
coefficient of determination (r2) and Kendall rank correlation
coefficient (7).

A. RQI: Model Performance vs. Task Performance

Across all detector—tracker pairs, we find that conventional
model-level performance metrics (COCO mAP, VOC mAP,
ROC4) are weak predictors of tracking performance. The
correlation (r2) between these model level metrics and the
performance of a tracker using that model is no better than
0.20 marginally (i.e. correlation for a single metric over all
trackers simultaneously).

That is, simply looking at the general purpose performance
of a detector outside of the context of tracking leads to poor
estimation of how well a tracking system using that detector
will perform.

Our approach of calculating tracking metrics directly by
simulating a perfect tracker is a significantly better estimator
of task performance than conventional proxy measures (i.e.,
detector metrics). As shown in Figure 4] and Table[[I across
all trackers and tracker metrics, MATCH’N METRIC is the
most strongly correlated proxy with marginal 72 values of
0.41 or above, showing that it is significantly more correlated
with tracking performance than model-level metrics such as

Metric HOTA
Proxy | VOC mAP [ COCO mAP [ ROC 4 [ HOTA*
[ Marginal [ 0.13 [-0.04] [ 0.14 [-0.08] [ 0.12 [-0.14] [ 0.58 [0.78] ]
sort | 0.15[-0.04] | 0.16 [-0.09] | 0.16 [-0.16] | 0.73 [0.76]
byte | 0.16 [-0.04] | 0.18 [-0.09] | 0.19 [-0.16] | 0.74 [0.79]
pkf | 0.18 [-0.03] | 0.19 [-0.07] | 0.12 [-0.12] | 0.73 [0.78]
oc-sort | 0.18 [-0.03] | 0.19 [-0.07] | 0.13 [-0.12] | 0.72 [0.78]
Metric MOTA
Proxy | VOC mAP | COCOmAP | ROC4 | MOTA*
[ Marginal [ 0.17 [-0.11] [ 0.19 [-0.14] [ 0.14 [-0.22] [ 0.78 [0.75] ]
sort | 0.19 [-0.09] | 0.22 [-0.13] | 0.22 [-0.26] | 0.89 [0.72]
byte | 0.14 [-0.15] | 0.15[-0.16] | 0.04 [-0.06] | 0.84 [0.72]
pkf | 0.21 [-0.09] | 0.23 [-0.13] | 0.20 [-0.26] | 0.90 [0.75]
oc-sort | 0.21 [-0.10] | 0.24 [-0.15] | 0.22 [-0.28] | 0.90 [0.79]
Metric IDF1
Proxy | VOC mAP [ COCO mAP [ ROC 4 [ IDF1*
[ Marginal [ 0.10 [0.05] [ 0.11 [0.01] [ 0.16 [-0.18] [ 0.41 [0.79] ]
sort | 0.13 [0.03] | 0.14 [-0.01] | 0.28 [-0.21] | 0.58 [0.79]
byte | 0.20 [0.00] | 0.22 [-0.04] | 0.28 [-0.21] | 0.67 [0.82]
pkf | 0.14 [0.09] 0.15 [0.04] 0.17 [-0.15] | 0.58 [0.79]
oc-sort | 0.12 [0.09] 0.14 [0.04] 0.18 [-0.15] | 0.55 [0.74]

TABLE II: This table summarizes the results of our evalua-
tion. The primary value is the r? coefficient of determination
(1.0 is ideal), while the parenthetical value is the Kendall 7
rank correlation (1.0 is ideal). The cells highlighted in bold
show the best proxy for estimating the metric.

mAP. For a fixed tracker and metric, the contrast is even more
pronounced, with VOC mAP having a mean r? correlation
of 0.17, COCO mAP of 0.18 and ROC4 of 0.18, while
MATCH’N METRIC has a mean 72 of 0.74.

Insight: Model-level metrics are poorly correlated with
tracker performance — model performance should not
be relied on to determine downstream task performance.

B. RQ2: Decision Accuracy

Even if there is not a strong correlation between a tracking
metric and a given proxy (as measured by r?), the proxy can
still be used to inform system design and development (i.e.
model selection), provided that it still produces an accurate
ordering of detectors.

The Kendall 7 rank correlation scores associated with
these proxies are in fact slightly negative, meaning that
choosing a model based on the highest mAP will more
often than not result in picking worse models over better
ones. For example, we find that the lowest ranked models
according to mAP score are the highest ranked in the actual
tracking task performance, while the model with the worst
tracking performance under HOTA and MOTA is in the top
3 recommended by mAP. On the other hand, our approach
performs very well at model selection, with much higher
mean scores across trackers (greater than 0.74 for each
metric), indicating much better ranking performance, and
therefore enabling better model selection.
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Fig. 4: Graph of correlation between tracker performance metrics (ground truth) and different proxy metrics. Each row of
plots represents a different tracker performance metric (y-axis). Each column of plots represents a different proxy metric
(x-axis). Each plot shows the correlation between a given tracker and proxy metric for all detector—tracker pairs.

Insight: Detector-level metrics can lead to poor selection.
MATCH’N METRIC is much more effective at model
selection.

C. RQ3: Robustness

We perform the same analysis of metric-proxy correlation
in the robust context and find that, while conventional proxies
improve somewhat, MATCH’N METRIC remains a significant
improvement.

For HOTA and IDFI, the conventional proxies show
improved r2 correlation and Kendall T, indicating increased
model selection ability. In MOTA, only ROC,4 showed
substantial improvement. On the other hand, our approach
shows increased performance under robustness analysis,
which improvements on correlation for HOTA and IDF1 and
rank score on all three tracking metrics. It remains signif-
icantly ahead of conventional proxies in both performance
estimation and model selection.

Insight: Our approach performs even better as a decision
metric when looking at robust system performance.

VI. CONCLUSION

We draw several key conclusions from our results.

First, conventional approaches to model selection do not
perform well. AP and ROC'4 do a poor job predicting per-
formance of the eventual system (regardless of the tracking
metric of interest), and do a poor job ranking models. This
means that, if a system designer simply uses the model
with the best AP off of the COCO leaderboards, or even
downloads, trains, and evaluates models on their data, they
may end up selecting a sub-optimal model.

Secondly, a tracker is not needed to assess tracker-level
performance. The proposed approach of modeling a perfect
tracker and evaluating tracker metrics is effective both as
an estimator of system performance as well as a ranking
criterion for model comparison and selection. This approach
is more flexible by allowing evaluation of any tracking
metric (beyond the three explored in this work), as it does
not rely on any inherent properties of the metric. This
allows developers to evaluate models in the system context
much earlier in the project development lifecycle. It also
allows for flexibility in the architecture of the system, letting
developers swap out the tracker or model independently
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Fig. 5: Graph of correlation between tracker metric and proxies
Motric TTOTA without impacting the model evaluation results.
Proxy | VOC mAP [ COCO mAP [ ROC4 [ HOTA* A conclusion that one might draw from this data is that
[ Marginal | 023 [033] | 023 [0.31] | 044050 [ 0.68 [0.86] | the choice of tracker doesn’t seem to effect which model is
sort | 028 10.32] | 0.28[0.31]1 | 0.52[0.50] | 0.74 [0.87] the best (or indeed impact the ranking much at all). However,
byte | 0.28 [0.37] 0.28 [0.35] 0.47 [0.49] | 0.77 [0.82] . C e
PKf | 0.25 [031] | 0.25 [0.29] | 0.50 [0.51] | 0.75 [0.88] the selection of trackers here is limited, and they are closely
ocsort | 0.22 [0.31] | 0.22[0.29] | 0.47 [0.51] | 0.77 [0.88] related algorithms. While this may not be conclusive, it is
Metric MOTA still suggestive, and warrants further investigation. The model
Proxy | VOCmAP | COCO mAP [ ROC4 [ MOTA* choice also appears to make much more difference than the
[ Marginal [ 0.06 [-0.10] [ 0.05 [-0.10] | 0.07[0.I8] | 0.69 [0.85] |  choice of tracker further highlighting the impact of traditional
sort | 0.10 [-0.09] | 0.09[-0.07] | 0.10[021] | 0.98 [0.93] evaluation approaches selecting poor models.
byte | 0.01 [-0.15] | 0.01 [-0.19] | 0.05 [0.09] | 0.51 [0.54]
pkf | 0.08 [-0.09] | 0.08 [-0.07] | 0.10 [0.24] | 0.96 [0.96] Finally, this work highlights the importance of metrics that
oc-sort | 0.08 [-0.09] | 0.07 [-0.07] | 0.10 [0.21] | 0.96 [0.96] include the system task, and the effectiveness of using ground
Metric IDF1 >
truth as a proxy for the system’s software components.
Proxy | VOC mAP [ COCO mAP [ ROC 4 [ IDF1* . proxy . Y . .. P .
[Marginal | 024 [041] | 024 [042] | 030 [0.54] | 0.62 [0.88] | Our previous work [8], which considered similar properties
o [ 026 [040] | 027 [041] | 045 [0.34] | 0.70 [0.90] for autonomous ground navigation, foqnq 51m11ar results,
byte | 0.27 [0.41] | 0.27 [0.40] | 0.41 [0.50] | 0.71[0.82] though the approach there was more limited in terms of
pkf | 0.27 [0.41] | 0.28 [0.43] [ 0.47 [0.59] | 0.69 [0.91] mocking software with ground truth. Our results provide
oc-sort | 0.26 [043] | 0.27 [044] | 045 [0.54] | 0.70 [0.90] further evidence to suggest that this approach generalizes

TABLE III: This table summarizes the results of our evalu-
ation in a robust context. The cells highlighted in bold show
the best proxy for estimating the metric. Again, our approach

significantly outperforms standard practice

to different ML system applications and tasks. Which is
to say, we believe it likely that by using ground truth to
simulate perfect behavior of the software components of an
ML system, we can effectively evaluate the ML component
in the system context, and get both more accurate estimates
of performance and more accurate comparisons and selection



of models. We plan to explore our hypothesis in additional
contexts in future work.
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