DOI: http://dx.doi.org/10.7551/978-0-262-33027-5-ch066

Wallace: An efficient generic evolutionary framework

Christopher Steven Timperley and Susan Stepney,
Department of Computer Science and York Centre for Complex Systems Analysis
University of York,

York, United Kingdom
ct584@york.ac.uk susan.stepney @york.ac.uk

Abstract

We present a novel evolutionary computing framework, Wal-
lace, that achieves ease-of-use and genericity, via a domain-
specific language, and simultaneously achieves efficiency via
meta-programming, as well as supporting parallelism. Wal-
lace also includes a novel multiple representation model of in-
dividual development, realised using meta-programming. We
describe the Wallace framework, illustrating it with a number
of example problems from the literature. We compare the per-
formance of this framework to existing EC frameworks; early
results show improvements in both conciseness and speed
over popular alternatives. Finally, we discuss the future of
EC frameworks, and the ongoing developments to the Wal-
lace framework.

Introduction

Choosing the right evolutionary computation (EC) frame-
work is a challenge; wherever high performance is offered,
large amounts of “boilerplate” code in a low-level language
seem sure to follow, whilst frameworks offering expressive-
ness through a simple and elegant syntax almost exclusively
do so at the cost of performance, reducing their value to re-
searchers and industrial users. By forcing users to decide
between expressiveness and performance, these tools divide
the research and development efforts of the community.
Our new EC framework, Wallace, achieves both ease-of-
use and high performance. Wallace exploits the expres-
sive power and conciseness of domain-specific languages
(DSLs) with the process of computational reflection (Maes,
1987), the ability to write and modify parts of a program
at run-time. Using the semantic information provided in
human-readable descriptions, we synthesise highly opti-
mised algorithms specific to the details of a given problem.
The rest of the paper is structured as follows. First, we re-
view the current state of EC frameworks, examining the de-
sign decisions they present and the trade-offs they incur. We
then propose how DSLs and meta-programming can be used
to avoid these trade-offs, and introduce our own EC frame-
work, Wallace. We discuss its architecture and key features,
before providing a number of examples written in Wallace,
then briefly examine the underlying meta-architecture used

to implement it. Finally, we compare the brevity and perfor-
mance of Wallace against that of some of the most popular
EC frameworks.

Background

As the field of EC continues to grow in popularity, the num-
ber of tools and frameworks increases, each varying in many
respects from the last, addressing the problems of a former
generation, whilst creating a new set of problems for a future
generation to address.

Examples of such problems include: sacrificing perfor-
mance when implementing frameworks in a dynamic lan-
guage; the search of brevity and ease-of-use; the introduc-
tion of overly complicated abstractions in an attempt to tailor
to all known evolutionary algorithms, harming both perfor-
mance and maintainability.

Where one tool appears to perform well in one respect,
it often lacks in another; such compromises often determine
the intended audience of the framework and ultimately con-
strain its applicability. Despite the constant introduction of
new software in the EC community, some older frameworks,
such as ECJ (Luke, nd) and Evolving Objects (Keijzer et al.,
2002), have managed to maintain a lasting appeal. Why have
these tools remained so popular, where have others failed,
and what problems still remain to be solved?

Audience

There are three main audiences for EC tools: educational,
industrial, and research. As frameworks increase in ap-
plicability, performance and genericity, they become more
aligned to research and industrial users, who require the abil-
ity to write fast and highly custom algorithms for complex
problems, but in the process they decrease their ease-of-use
and raise their barrier to entry, making them less suited to an
educational audience.

Applicability

Each framework varies in its domain of applicability; some
are restricted to performing a small subset of EC, such as

Christopher Steven Timperley, Susan Stepney (2015) Wallace: An efficient generic evolutionary framework. Proceedings of

the European Conference on Artificial Life 2015, pp. 365-372

€20z ludy 91 uo 3senb Aq ypd-990uo-G-LZ0€E-29Z-0-8.6/S88E061/S9€/LZ/S L 0ZIBOD/)pd-SBUIPaad0.d/es)/npa}iw1oalip//:dpy woly papeojumoq

GEVA (O’Neill et al., 2008), whilst others are built to facil-
itate all forms of EC. Each approach has its own merits and
disadvantages.

By modelling only a subset of EC, one may reap the per-
formance benefits of specificity, by significantly reducing
the level of abstraction, removing inefficient generic code,
and using more efficient memory allocation patterns. This
improves both performance of the framework, and the main-
tainability of its codebase, but comes at the cost of learning
a new framework for each form of EC one wishes to per-
form. Furthermore, creating a new framework for each field
of EC involves re-implementing highly common operations,
representations, and logging facilities.

More generic tools, such as ECJ and EO, are designed to
be applicable in all realms of meta-heuristic computation,
but at the cost of performance; their highly abstract frame-
works add significant layers of overhead and complexity, re-
moving much potential for optimisation. EO deals with this
better than ECJ, by exploiting C++ templates, but increases
the complexity of its language in the process, raising the bar-
rier to entry. ECJ and EO possess plentiful libraries of oper-
ators, representations and more, but other high-level frame-
works, such as JCLEC (Ventura et al., 2008) and Watch-
maker (Dyer, 2010), are often lacking; it is easier to imple-
ment a small subset of EC well than it is to implement its
entirety.

As highlighted by Gagné and Parizeau (2006), EC frame-
works differ in their domains of applicability, and in the
genericity of their various components, such as their rep-
resentation, fitness, operations, evolutionary model, param-
eters, and output. Tools such as ECJ and EO have genericity
in all criteria proposed by Gagné and Parizeau, and allow
users to easily integrate new concepts into the framework.

Ease-of-Use

High performance frameworks are almost exclusively writ-
ten in relatively low-level languages such as C, C++ and
Java. Such frameworks naturally incur considerable boil-
erplate code and require an extensive knowledge of their un-
derlying language. This higher level of performance comes
at the cost of a reduced level of conciseness and expressive-
ness. By trading off these properties in search of perfor-
mance, the barrier of entry to these tools is raised, and their
potential as educational tools is diminished.

Frameworks written in interpreted languages, such as
Python and Ruby, require fewer lines of code and permit
more human readable descriptions than their compiled coun-
terparts. Additionally, such languages allow the user to eas-
ily prototype, inspect and modify algorithms as they are run-
ning, making them well suited to the classroom. However,
such advantages are attained by sacrificing the speed and
optimisation opportunities afforded by faster compiled lan-
guages.

Some high performance frameworks escape the difficul-

ties of dealing with low-level languages by bypassing them
all together, and instead relying on user input to graphical
user interfaces to setup and run algorithms. Whilst these
GUIs often make for excellent educational tools, they are
seldom useful to the industrial or research user, who almost
always wishes to use representations, operations and algo-
rithms beyond those incorporated within the tool.
Frameworks may attempt to escape these issues by allow-
ing users to describe their algorithms in the form of a highly
restricted DSL. Such descriptions serve as rigid specifica-
tions, say in the form of Java parameter files or XML files,
allowing the user to specify the various settings of their al-
gorithms from a set of predefined options. Whilst these de-
scriptions are often more concise than their alternative, they
are so at the cost of expressiveness; seldom is the user al-
lowed to describe the behavioural aspects of an algorithm
without writing in the language of the framework itself.

An Ideal Language

We believe that if a framework achieved ease-of-use, ap-
plicability, genericity and performance, that it might better
serve all audiences, and thus become a candidate for a com-
mon language, bringing the EC audiences closer together.
Yet such a framework seems impossible; surely one cannot
maintain performance whilst enjoying genericity and appli-
cability, which themselves cannot be enjoyed without com-
promise to ease-of-use?

Our solution is two-pronged. First, by employing a DSL,
we can still enjoy ease-of-use, whilst maintain genericity
and applicability. Such an approach not only allows the
user to write algorithms in more natural terms, making them
more amenable to communication, but also retains the ex-
pressiveness of the underlying programming language, al-
lowing the user to integrate behaviours beyond those pre-
scribed, unlike parameter file based approaches.

Second, in order to maintain high performance whilst
achieving these qualities, we exploit meta-programming to
allow us to write high level code that remains on a par with
low level approaches in terms of performance. Rather than
using our DSL to simply specify components within the lan-
guage, we enhance it with the ability to extend the language
and to dynamically synthesise new code, allowing natural
high-level descriptions to be transformed into highly opti-
mised context-aware code fragments on-the-fly, as shown in
Figure 1.

Our realisation of this solution is the Wallace framework,
named after the famous naturalist and co-discoverer of natu-
ral selection, Alfred Russel Wallace. To achieve these feats
we implemented Wallace using the Julia language.

Julia (Bezanson et al., 2014) is a relatively young high-
level, high-performance dynamic programming language,
designed for technical computing, built around multiple-
dispatch, a rich type system, and a just-in-time compiler that
specialises methods based upon types encountered at run-

Christopher Steven Timperley, Susan Stepney (2015) Wallace: An efficient generic evolutionary framework. Proceedings of

the European Conference on Artificial Life 2015, pp. 365-372

€20z ludy 91 uo 3senb Aq ypd-990uo-G-LZ0€E-29Z-0-8.6/S88E061/S9€/LZ/S L 0ZIBOD/)pd-SBUIPaad0.d/es)/npa}iw1oalip//:dpy woly papeojumoq

Julia
Object Code

Y

Y

N

Wallace DSL File YAML File

Figure 1: High-level descriptions of objects are parsed into YAML
before being dynamically synthesized into optimised Julia object
code.

Initialiser
Evaluator
N

Breeder

Figure 2: The flow of data within the component-based architec-
ture of an EA in Wallace.

Criterion

0

Operator ----

time. As a result of these design decisions, Julia attains a
performance close to if not equal to C across a wide range
of problems, without needing to resort to writing low-level
code (Bezanson et al., 2012).

Architecture

Similar to ECJ and EO, Wallace employs a component-
based architecture, where algorithms are described in terms
of a series of customisable components, each responsible for
implementing some part of the standard evolutionary loop
employed by the majority of EAs; the flow of data between
the components within this architecture is shown in Figure
2. Within Wallace each component is built using a provided
description, and often compiled to a highly specific and op-
timised form through the use of run-time code evaluation.

In this section we outline how Wallace implements some
of these components, and discuss its population model and
its novel multiple representation model.

Population Model

Wallace uses a population model similar to that of EO and
ECJ, where an algorithm operates on a single population di-
vided into an arbitrary number of independently evolving
sub-populations, or demes.

Grammar
Derivation

Bit Sequence
[Genotype]

Integer
Sequence

Program

[Phenoy

Figure 3: An example series of developmental stages for a prob-
lem using grammatical evolution. A sequence of bits is used as the
genotype of an individual, from which an integer sequence may be
produced; the bi-directional indicates that changes in the integer
sequence may be transmitted to the bit sequence. From the integer
sequence, a grammar derivation is produced, which in turn, is used
to produce a program.

species:
stages:
bit_sequence:
representation<bit_vector>: { length: 800 }
int_sequence:
from: bit_sequence

representation<int_vector>: { length: 100 }
derivation:

from: int_sequence

representation<string>: { frozen: true }
program:

from: derivation
representation<lambda>:
arguments: ["x::Int", "y", "z"]

Figure 4: A multiple representation realisation of a simple gram-
matical evolution (Figure 3) approach to symbolic regression.

Each deme hosts a single species of individuals. The pop-
ulation may comprise several heterogeneous demes, allow-
ing different species to be co-evolved. Island model EAs can
be realised by attaching a migrator component to the popu-
lation, which exchanges individuals between demes, accord-
ing to a migration policy (Whitley et al., 1998). By combin-
ing the migrator component with Wallace’s multiple repre-
sentation model (below), we can implement more advanced
models, such as the multiple representation island model
(Skolicki and De Jong, 2004), where each deme evolves a
different representation of a given problem in parallel.

Multiple Representation Model

A novel feature of Wallace is its multiple representation
model, which allows individuals to include an arbitrary
number of linked representations, implementing a rich pro-
cess of development. One may create a Lamarckian con-
nection between certain developmental stages, allowing
changes made to a later stage to be communicated back to
earlier ones. An example is given in Figure 3.

To define a species, the user details the development
stages of its individuals, by specifying the representation
used by each stage, along with any associated parameters,
and the development stage from which it should be pro-
duced. An example species definition is given in Figure 4.

Users may add arbitrary representations into Wallace by
registering their implementing type and associated factory
with the kernel. These representation types define the de-

Christopher Steven Timperley, Susan Stepney (2015) Wallace: An efficient generic evolutionary framework. Proceedings of

the European Conference on Artificial Life 2015, pp. 365-372

€20z ludy 91 uo 3senb Aq ypd-990uo-G-LZ0€E-29Z-0-8.6/S88E061/S9€/LZ/S L 0ZIBOD/)pd-SBUIPaad0.d/es)/npa}iw1oalip//:dpy woly papeojumoq

One Point
Crossover
[Int Sequence]

Gaussian
Mutation
[Int Sequence]

Bit-Flip
Mutation
[Bit String]

Tournament
Selection

Offspring

Two Point
Crossover
[Int Sequence],

Uniform
Mutation
[Int Sequence]

Deme Members

Figure 5: An example breeding setup, illustrating the chain of op-
erations that a proto-offspring is subjected to before being inserted
into the set of offspring. Each node within the graph represents a
particular selection method, or a variation method, in which case it
operates on the developmental stage described within.

fault way to pseudo-randomly generate new individuals, and
are used to describe how an instance of one representation
should be transformed into an instance of another.

Breeding Model

Selecting parents and producing offspring is the responsi-
bility of Wallace’s breeder component, heavily inspired by
ECJ’s powerful breeding pipeline system. Each deme is al-
located its own breeder, allowing different demes to carry
out their own process of breeding. This breeder produces
a set of offspring at each generation, prior to the stage
of replacement, where the replacement component decides
which individuals from the current members of the deme and
its set of offspring should survive into the next generation.

The simplest breeder is the fast breeder, which takes a
single breeding source and uses it to produce a desired num-
ber of offspring. This breeding source may take the form of
a selection or variation method, or as a form of proxy, either
returning offspring from a number of different sources based
upon chance, or selecting between them based upon the state
of the search. Each source may draw its inputs from other
sources, or directly from the contents of a deme, as in the
case of selection methods. An example breeding setup is
shown in Figure 5.

Using the syntax in Figure 6, users may add new sources
into the breeder by declaring their type (e.g. selector or vari-
ation operator), the name of the source from which they
should draw their inputs, the name of the developmental
stage upon which they should operate, which defaults to the
genotype if omitted, along with any operator-specific param-
eters, such as mutation rate and tournament size.

Like most breeders within Wallace, the fast breeder has
support for parallel breeding, which it achieves by splitting
the workload at each step within the breeding process as
equally as possible between all available cores.

Fitness Model

Following breeding, and prior to replacement, each uneval-
uated candidate solution within the population is subject to

breeder<breeder/fast>:
sources:
s<selection>:
operator<selection/tournament>: { size: 2 }
x<variation>:
from: s
stage: bits
operator<crossover/two_point>: { rate: 0.7 }
m<variation>:
from: x
stage: bits
operator<mutation/bit_flip> { rate: 0.01 }

Figure 6: An example of a fast breeder setup.

evaluator<evaluator/simple>:
objective: |
SimpleFitness (true, count (i.bit_vector, 1))

Figure 7: An example of a simple evaluator, used to compute
fitness as the number of ones within an individual’s bit vector rep-
resentation.

evaluation. This process is carried out by an evaluator,
which accepts a population and assigns fitness values to all
of its (unevaluated) individuals based on their performance.
This evaluator may treat each individual in isolation, or may
implement a co-evolutionary approach, where the fitness of
an individual is calculated by combining or comparing it
against other individuals in the same population, or another
population.

The simple evaluator is built by being given an objective
function, provided in the form of a lambda function, accept-
ing a single input individual and returning a calculated Fit-
ness object for that individual (Figure 7).

The concept of fitness itself is implemented using ab-
stract Fitness objects, which only require the programmer
to specify a means of comparing them, allowing multiple-
objective and more advanced co-evolutionary fitness values
to be used; this avoids the user becoming trapped within the
limitations of a single scalar fitness value, as is the case with
many other frameworks.

In a similar fashion to breeders, evaluators may also
take advantage of multiple cores by splitting their workload
across each of them.

Examples

To illustrate the use of Wallace, we give two examples: im-
plementing the OneMax problem using a simple genetic al-
gorithm (Figure 8), and evolving a Java Al controller for the
Robocode (Nelson et al., 2014) tank game via grammatical
evolution (Figure 9).

We begin the algorithm description for a problem by start-
ing with the algorithm keyword, followed by the name of
our particular algorithm. We specify that our algorithm ex-
tends the base evolutionary algorithm; were we to imple-

Christopher Steven Timperley, Susan Stepney (2015) Wallace: An efficient generic evolutionary framework. Proceedings of

the European Conference on Artificial Life 2015, pp. 365-372

€20z ludy 91 uo 3senb Aq ypd-990uo-G-LZ0€E-29Z-0-8.6/S88E061/S9€/LZ/S L 0ZIBOD/)pd-SBUIPaad0.d/es)/npa}iw1oalip//:dpy woly papeojumoq

type: evolutionary_algorithm

_my_breeder<breeder/fast>:
sources:
s<selection>:
operator<selection/tournament> { size: 2 }
x<variation>:
from: s
stage: bits
operator<crossover/uniform>: { rate: 0.7 }
m<variation>:
from: x
stage: bits
operator<mutation/bit_flip>: { rate: 0.01 }

_my_species:
stages:
bits:
representation<bit_vector>: { length: 100 }

replacement<generational>: {}

population:
demes:
- capacity: 100
species: $ (_my_species)
breeder: $ (_my_breeder)

evaluator<evaluator/simple>:
objective: |
SimpleFitness (sum(i.bits), true)

Figure 8: An implementation of OneMax within Wallace.

ment some other form of meta-heuristic we would extend its
base type instead.

We then describe the species of individuals that we wish
to evolve, outlining each of its stages of development and the
representations they use, as well as the type of fitness object
used to compare the fitness of individuals within the same
species. For OneMax, the species definition says that our
individuals have one stage of development, that being their
bit-string, and that we use a simple scalar-based measure
of fitness. For the more complex Robocode problem, we
setup the bit-string, codon sequence, and grammar deriva-
tion, representing the source code for our robot controller,
as commonly used when performing GE, along with an ad-
ditional controller stage that we have added, which uses a
custom representation to simplify compilation of robocode
controllers and communications with the robocode platform.

Next, we outline the specifics of our breeder, detailing
each of its operators, along with their respective sources and
the name of the development stage on which they operate, in
the case of variation methods.

Finally, we specify our method of replacing individuals
following the breeding phase, and specify the size, species
and breeder used by each of the demes within the population,
before providing an evaluation function for our problem, re-
sponsible for measuring the quality of potential solutions.

Wallace takes these descriptions and using meta-
programming, compiles them into highly efficient object-
code, optimised to the specifics of the given problem.

type: evolutionary_algorithm

termination:
iterations<criterion/iterations>: { limit: 1000 }

_my_species:
stages:
bits:
representation<bit_vector>: { length: 800 }
codons:
from: bits
lamarckian: true
representation<int_vector>: { length: 100 }
source_code:
from: codons
representation<grammar_derivation>:
root: s
rules:
controller:
from: source_code
representation<robocode_controller>: {}

_my_breeder<breeder/fast>:
sources:
s<selection>:
operator<selection/tournament>: { size: 5 }
x<variation>:
from: s
stage: Dbits
operator<crossover/two_point>: { rate: 0.7 }
m<variation>:
from: x
stage: codons
operator<mutation/gaussian> { rate: 0.02 }

replacement<generational>: { elites: 1 }

population:
demes:
- capacity: 100
species: $(_my_species)
breeder: $(_my_breeder)

evaluator<evaluator/simple>:
objective: |
score = execute (i.controller)
SimpleFitness (score, true)

Figure 9: An implementation of Robocode controller evolution
within Wallace.

Meta-Architecture

The Wallace meta-architecture provides a process responsi-
ble for transforming concise high-level component descrip-
tions, provided in a DSL, into fragments of highly optimised
code, using meta-programming. It is through the reflective
capabilities of Julia that Wallace manages to perform such
transformations on-the-fly, as the program is running.

Wallace Description Language

Rather than interacting directly with the Julia programming
language, Wallace users provide natural and concise high-
level descriptions of their algorithms and their various com-
ponents using a specialised DSL built upon an extended
YAML, which retains the ability to provide code fragments
and to define new behaviours.

Descriptions are realised as objects within Wallace by
passing them to the make function. Following a pattern sim-

Christopher Steven Timperley, Susan Stepney (2015) Wallace: An efficient generic evolutionary framework. Proceedings of

the European Conference on Artificial Life 2015, pp. 365-372

€20z ludy 91 uo 3senb Aq ypd-990uo-G-LZ0€E-29Z-0-8.6/S88E061/S9€/LZ/S L 0ZIBOD/)pd-SBUIPaad0.d/es)/npa}iw1oalip//:dpy woly papeojumoq

type: evolutionary_algorithm

evaluator:
type: evaluator/simple
objective: |

replacement:
type: generational

> julia
Julia...

julia> using Wallace

wallace> alg = load("max_ones.wlc")
<EvolutionaryAlgorithm:...>

wallace> run! (alg)

Figure 10: An example algorithm description translated to
YAML.

ilar to that of the Factory pattern (Freeman et al., 2004),
inspired by the popular Ruby test data generation tool,
FactoryGirl (Ferris, 2014), descriptions are forwarded to the
factory responsible for unfolding them; this may be done
automatically by the Wallace kernel, by inspecting the type
attribute of the description, or by manually specifying which
factory should be used.

Once a description has reached a factory, it is subject to
the processes of preparation, validation and composition,
before it is transformed into an object of the desired type
(which may itself be a description).

Preparation Stage The description is transformed into a
valid YAML object (Figure 10), by first removing all com-
ments, before extracting each type tag from within the doc-
ument and inserting it into its associated object, and finally
handling all insertion point operations.

Validation Stage Next, the YAML description is passed to
the validation stage, where it is checked against a series of
rules for legality, provided in the form of a function, before it
passed onto the final stage to be transformed into a concrete
object.

Composition Stage Finally, the validated description is
used to construct the concrete object it describes. Usually
this stage involves recursively constructing the concrete ob-
jects of the desired object’s individual components, by in-
voking each of their associated factories with their descrip-
tions, before composing them into a single object. Rather
than provide a concrete object, it may be the case that cer-
tain abstract factories are used to construct partial objects,
or to further detail given descriptions.

Performance Optimisations

In addition to using reflection to transform descriptions into
object code, Wallace exploits reflection to implement opti-
mised data structures and algorithms, highly specific to the
details of a given problem.

To realise its multiple representation model without incur-
ring a performance hit by storing each stage of an individ-
ual’s development in an abstract container, Wallace uses the
information provided by a description of a given species to

Figure 11: Loading and executing an algorithm description via
the REPL.

create a memory-optimised individual type, specific to that
species; this approach substantially reduces look-up time
and memory consumption. This technique is also applied
to the fitness model used by a given species of individuals;
by specifying the type of fitness used by individuals within
that species, Wallace can create a faster and more compact
individual type definition by stating it specifically.

Wallace also uses reflection to implement a more efficient
mechanism for converting between representations. Rather
than dynamically calculating whether a given stage is out
of sync with the genome and then determining the series of
conversion steps that should be performed, Wallace deter-
mines the state of each of the development stages follow-
ing each operation and hard-codes the minimal number of
conversion operations into a highly specific (and thus opti-
mised) breeder.

Typically, these conversion operations are applied to each
individual within a group in sequence, and written in terms
of a mapping operation on a single individual. However, the
user may elect to implement a batch conversion mechanism
for their representation, defining how a group of individuals
should have representations converted collectively, allowing
costly overheads to be minimised, such as compiling exter-
nal code, proving useful when performing grammatical evo-
lution in an external language.

Framework Interaction

Currently, Wallace lets its users interact in three different
ways, allowing it to be used in a variety of contexts and for
a multitude of purposes.

Read-Eval-Print-Loop (REPL) The quickest way to get
up and running with Wallace is through Julia’s REPL in-
terface, augmented with additional functionality, allowing
users to quickly perform experiments and prototype sim-
ple code. Component descriptions can be loaded into Wal-
lace through calling the load or build commands with the
location of a valid component description file (Figure 11).
Once loaded, objects may be treated as any other kind of
object within Julia, allowing them to interact with external
libraries.

The REPL also provides a number of usability-driven fea-

Christopher Steven Timperley, Susan Stepney (2015) Wallace: An efficient generic evolutionary framework. Proceedings of

the European Conference on Artificial Life 2015, pp. 365-372

€20z ludy 91 uo 3senb Aq ypd-990uo-G-LZ0€E-29Z-0-8.6/S88E061/S9€/LZ/S L 0ZIBOD/)pd-SBUIPaad0.d/es)/npa}iw1oalip//:dpy woly papeojumoq

Framework Language

ECJ Java
JCLEC Java
DEAP Python
Pyevolve Python
inspyred Python

Table 1: Evolutionary computation frameworks to perform perfor-
mance and brevity comparisons.

tures, some of which are listed below, which allow users to
quickly assimilate themselves with the framework with min-
imal effort.

e help(type), used to provide descriptions of the various
components available within Wallace, along with their in-
puts and modes of operations, in a neat and user-friendly
manner.

e list subtypes(type), provides a list of all known sub-
types of a given type, each of which can be further in-
spected using the help command.

Script Execution One may also write conventional Julia
scripts to compose and execute their algorithms, by simply
calling “using Wallace” at the top of the script, and executing
the file as standard from the command line.

Interactive Graphical Notebook As Wallace seamlessly
integrates into the Julia language, one may also exploit Ju-
lia’s powerful browser-based interactive environment, IJulia,
built upon the popular IPython/Jupyter interactive computa-
tional environment. By combining [Julia with other pack-
ages, such as Gadfly and Interact.jl, one may also create a
large variety of highly detailed and customisable plots and
graphs.

Together, these tools form a powerful package for evolu-
tionary computation, both in a research, industrial and class-
room environment, allowing experienced users and new-
comers alike to quickly and empirically prototype solutions
and to visualise the evolutionary process, whilst retaining
the performance benefits shared by lower level languages.

Comparison

Here we compare the brevity and performance of Wallace to
a selection of the most popular EC frameworks used within
the literature, listed in Table 1, in order to assess its standing.
Due to time constraints and compilation issues, we were un-
fortunately unable to test performance against other C/C++
options.

Brevity

In order to compare the conciseness of Wallace descrip-
tions to those of other frameworks, we repeated the study
carried out by Fortin et al. (2012), where the number of

Framework Type Config. Alg. Example Total

Wallace 34 29 22 0 85
ECJ 308 34 88 26 456
Pyevolve 59 0 261 16 336
inspyred 0 0 330 30 360
DEAP 0 0 0 59 59
JCLEC 198 15 192 29 434

Table 2: Number of lines required to implement OneMax problem
using different EC frameworks.

Benchmark

GA1l OneMax (n = 100)

GA2 Rastrigin (n = 100)

GP1 Artificial Ant (Santa-Fe Trail, 400 moves)
GP2 Symbolic Regression (z* 4 z° + 2% +)
GP3 Boolean Circuit (8x3 multiplexer)

Table 3: Benchmark problems used to compare performance of
different EC frameworks. Each had a population size of 100, and
ran for 1000 generations.

lines required to implement an algorithm to solve the One-
Max benchmark problem is counted and compared for each
framework. The results are given in Table 2.

Whilst it took more lines in Wallace to implement the
OneMax problem than it did using DEAP, a framework
firmly established for its clarity and brevity, the example
file used to enter the specifics of the algorithm setup and
the OneMax problem was smaller and considerably simpler
than that used by DEAP, involving only the specification of
problem details in a simple and compact structure.

Furthermore, Wallace required only that the user describe
the setup of their algorithm in terms of its components, al-
lowing them to choose from a range of operators and rep-
resentations from its standard library, whereas the example
file used by DEAP required the user to write the EA from
scratch in Python, using its framework to skip boilerplate
definitions.

Performance

In order to fairly assess the performance of Wallace to that
of other frameworks, we compared execution times across
100 runs for a number of common benchmark functions on
a single thread, listed in Table 3, under the same conditions
and using the same algorithm setup (or as close as the un-
derlying framework would permit).

An overview of the results from our experiment are
given in Table 4; the full experiment setup and raw results
data are online at https://github.com/ChrisTimperley/
EC-Software-Benchmarks. Where it was not possible to im-
plement a solution to a given problem using the standard li-
brary of a framework, that benchmark was skipped, and is
denoted within the table by n/a.

Christopher Steven Timperley, Susan Stepney (2015) Wallace: An efficient generic evolutionary framework. Proceedings of

the European Conference on Artificial Life 2015, pp. 365-372

€20z ludy 91 uo 3senb Aq ypd-990uo-G-LZ0€E-29Z-0-8.6/S88E061/S9€/LZ/S L 0ZIBOD/)pd-SBUIPaad0.d/es)/npa}iw1oalip//:dpy woly papeojumoq

Framework GAl GA2 GP1 GP2 GP3

Wallace 0.329 0.453 0938 0.294 15971
ECJ 0.502 1.070 1.338 0.791 31.759
JCLEC 0386 0.431 n/a 0430 n/a
DEAP 5357 12,530 105.683 53.949 59.056
Inspyred 5.343 11.679 n/a n/a n/a
Pyevolve 2977 5.011 n/a n/a n/a

Table 4: Mean time taken to perform each benchmark, averaged
over 100 runs. Recorded using the @time macro in Julia for Wal-
lace, and using time in the shell for all others.

As one might predict, the results show a marked differ-
ence between the relatively slow performance of the Python-
based frameworks and the significantly faster Java-based
frameworks.

However, Wallace, like the Python-based frameworks, is
written in a high-level dynamic language, yet it shows a per-
formance similar to, and in some cases beyond that of, the
the lower-level Java-based frameworks. Wallace attains the
best performance on 4 out of the 5 benchmarks tried, with
only a narrow gap to the winner of GA2, JCLEC. Although
difference in performance between Wallace and JCLEC is
relatively small across each of the benchmarks, the differ-
ence between Wallace and each of the other languages tested
is far more noticeable.

Conclusion

We have presented Wallace, a new EC framework, possess-
ing both high performance and a high degree of concise-
ness and clarity, through the novel combination of DSLs
and computational reflection. The results of our compari-
son show that Wallace shares a similar performance with the
fastest existing frameworks that we analysed, and manages
to do so whilst requiring substantially fewer lines of code
than its nearest competitors.

The source code for Wallace, available under the LGPL
license, along with its latest binaries, documentation and
bug reporting can be found online at: https://github.com/
ChrisTimperley/Wallace.jl.

Future Work

Our primary focus for the future remains on improving and
supporting the Wallace framework so that users can easily
write and share their own algorithms, representations and
extensions. In the short term, we intend to do this by creating
a dedicated website, complete with in-depth documentation
and a series of tutorials for a wider range of users. In the
further future, we hope to build upon Julia’s package sys-
tem and provide our own online repository, allowing users
to share their creations for the benefit of the EC community.

We also intend to explore the wider possibilities for meta-

programming within Wallace, and how our techniques might
be applied to provide similar performance boosts to other

large frameworks.

Acknowledgments

We thank Dan Franks, for his advice and support, and for
trusting us to use Wallace for his Masters-level evolutionary
computation module, and the patient students who provided
us with invaluable feedback. We also thank Paul Andrews
and Simon Hickinbotham, for numerous discussions about
the ideas and direction of the framework. This work was
partly funded by an EPSRC DTG.

References

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. (2014).
Julia: A fresh approach to numerical computing. CoRR,
abs/1411.1607.

Bezanson, J., Karpinski, S., Shah, V. B., and Edelman, A. (2012).
Julia: A fast dynamic language for technical computing.
CoRR, abs/1209.5145.

Dyer, D. (2010). The Watchmaker Framework for Evolutionary
Computation. http://watchmaker.uncommons.org/. Ac-
cessed: 2015-03-05.

Ferris, J. (2014). FactoryGirl. https://github.com/thoughtbot/
factory _girl. Accessed: 2015-03-05.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M.,
and Gagné, C. (2012). DEAP: Evolutionary algorithms made
easy. Journal of Machine Learning Research, 13:2171-2175.

Freeman, E., Freeman, E., Bates, B., and Sierra, K. (2004). Head
First Design Patterns. O’ Reilly & Associates, Inc.

Gagné, C. and Parizeau, M. (2006). Genericity in evolutionary
computation software tools: Principles and case-study. Int. J.
on Artificial Intelligence Tools, 15(02):173-194.

Keijzer, M., Merelo, J., Romero, G., and Schoenauer, M. (2002).
Evolving Objects: A General Purpose Evolutionary Compu-
tation Library. In Artificial Evolution, volume 2310 of LNCS,
pages 231-242. Springer.

Luke, S. (n.d.). ECJ 22: A Java-based Evolutionary Computation
Research System. http://cs.gmu.edu/ eclab/projects/
ecj/. Accessed: 2015-03-05.

Maes, P. (1987). Concepts and Experiments in Computational Re-
flection. In OOPSLA ’87, pages 147-155. ACM.

Nelson, M. A., Larsen, F. N., and Savara, P. (2014). Robocode.
http://robocode.sourceforge.net/. Accessed: 2015-03-05.

O’Neill, M., Hemberg, E., Gilligan, C., Bartley, E., McDermott, J.,
and Brabazon, A. (2008). GEVA: Grammatical Evolution in
Java. SIGEVOLution, 3(2):17-22.

Skolicki, Z. and De Jong, K. (2004). Improving Evolutionary Al-
gorithms with Multi-representation Island Models. In PPSN
VIII, volume 3242 of LNCS, pages 420—429. Springer.

Ventura, S., Romero, C., Zafra, A., Delgado, J. A., and Hervis, C.
(2008). JCLEC: a Java framework for evolutionary computa-
tion. Soft Computing, 12(4):381-392.

Whitley, D., Rana, S., and Heckendorn, R. B. (1998). The Island
Model Genetic Algorithm: On Separability, Population Size
and Convergence. J. Comp. Info. Tech., 7:33-47.

Christopher Steven Timperley, Susan Stepney (2015) Wallace: An efficient generic evolutionary framework. Proceedings of

the European Conference on Artificial Life 2015, pp. 365-372

€20z ludy 91 uo 3senb Aq ypd-990uo-G-LZ0€E-29Z-0-8.6/S88E061/S9€/LZ/S L 0ZIBOD/)pd-SBUIPaad0.d/es)/npa}iw1oalip//:dpy woly papeojumoq

