
1

Using Dynamic Binary Instrumentation to
Detect Failures in Robotics Software

Deborah S. Katz, Christopher S. Timperley, and Claire Le Goues

Abstract—Autonomous and Robotics Systems (ARSs) are
widespread, complex, and increasingly coming into contact with
the public. Many of these systems are safety-critical, and it is
vital to detect software errors to protect against harm.

We propose a family of novel techniques to detect unusual
program executions and incorrect program behavior. We model
execution behavior by collecting low-level signals at run time
and using those signals to build machine learning models. These
models can identify previously-unseen executions that are more
likely to exhibit errors.

We describe a tractable approach for collecting dynamic
binary runtime signals on ARSs, allowing the systems to ab-
sorb most of the overhead from dynamic instrumentation. The
architecture of ARSs is particularly well-adapted to hiding the
overhead from instrumentation.

We demonstrate the efficacy of these approaches on
ARDUPILOT — a popular open-source autopilot software system
— and HUSKY — an unmanned ground vehicle — in simulation.
We instrument executions to gather data from which we build
supervised machine learning models of executions and evaluate
the accuracy of these models. We also analyze the amount of
training data needed to develop models with various degrees of
accuracy, measure the overhead added to executions that use the
analysis tool, and analyze which runtime signals are most useful
for detecting unusual behavior on the program under test. In
addition, we analyze the effects of timing delays on the functional
behavior of ARSs.

Index Terms—Software quality; Software testing; Autonomous
systems; Robotics; Oracle problem

I. INTRODUCTION

AUTONOMOUS and Robotics Systems (ARSs) are
widespread, complex, and increasingly coming into con-

tact with the public. Many of these systems are safety-critical,
and it is vital to detect software errors to protect against
harm [1], [2]. Significant challenges hamper efforts to ensure
end-to-end safety in autonomous systems [3]. Such systems
are often inaccessible and resource constrained (in terms of
both power and computing resources), and typically make
use of a mix of custom- and off-the-shelf components from
a diversity of suppliers [4]. Use of proprietary components
often means that source code is unavailable [5]. Similarly, it is
typically difficult to adequately model certain system elements,
especially continuous elements [6], for the purpose of formal
verification. System correctness and safety thus requires a
diverse array of assurance and analysis techniques, and those

D.S. Katz performed this work when with the Computer Science De-
partment, Carnegie Mellon University, Pittsburgh, PA, 15213 USA e-mail:
dskatz@gmail.com . She is currently affiliated with Seegrid.

C. Le Goues and C.S. Timperley are with the Institute for Software
Research, Carnegie Mellon University.

techniques typically cannot assume the availability of either
source code or formal specifications for analysis.

However, robotics software also presents unique opportu-
nities to leverage techniques that are not applicable or prac-
tical in standard software applications [5], [7]. In particular,
we observe that, as parts of a real-time, distributed system,
robotics system components often experience significant idle
time waiting for events from other parts of the system or from
the environment. This presents valuable unused capacity that
can “hide” the overhead of tools that are impractical to use
with CPU-, I/O-, or memory-bound software. We demonstrate
some of this capacity experimentally.

With this opportunity in mind, our key insight is that
Dynamic runtime characteristics can tell us about program
behavior, from which we can build a machine-learning model
of expected behavior. That is, by observing and measuring low-
level execution signals such as number of machine instructions
executed, we can effectively characterize program behavior
over many executions. By combining these signals using
machine learning, we can produce models that determine
whether the current execution appears normal or anomalous,
in terms of deviation from established patterns, [8]. These
models can be used to predict whether new executions can
be categorized as behaving as intended, or exhibiting errors.
Our further insight is that the architecture of ARSs makes this
approach tractable despite timing-sensitivity.

Marrying these two observations, in this paper, we present
an approach we call LLANALYZER for detecting errors in
robotics systems. LLANALYZER uses Dynamic Binary In-
strumentation (DBI) to collect rich, low-level information
about program behavior. We use machine learning to analyze
and combine the signals into predictive models that identify
whether an execution is nominal or anomalous.

At a high-level, DBI inserts code that analyzes a subject
program while it executes. Although it is typically too heavy-
weight an approach to be practical in many circumstances [5],
[7], we find that robotics systems are well-suited to an ap-
proach that uses DBI appropriately, because they can absorb
overhead in component idle time. We find this to be the case,
even in cases when the timing of control loops has been tuned
to avoid waste. Despite this opportunity, however, significant
effort is required to still keep overhead tractable. Because
they are real-time systems, robotics systems are sensitive to
timing, sequencing, and deadline issues that can be affected
by excessive instrumentation overhead.

We therefore develop a custom DBI tool we call
SIGNALSEER using the VALGRIND platform [9], [10] to ef-
ficiently collect selected runtime information that summarizes

ar
X

iv
:2

20
1.

12
46

4v
1 

 [
cs

.S
E

] 
 2

9 
Ja

n 
20

22



2

key characteristics of an execution’s behavior, such as the
number of instructions executed or the maximum address of
a memory load [11].

LLANALYZER is applicable either at development- or run-
time. At development time, in simulation or field testing,
our techniques can detect unusual executions, providing the
opportunity to repair any underlying faults in the software
before deployment. Many errors in robotics software can be
replicated in software simulation without full environmental
replication [12], [13]. Discovering robotics faults early in
simulation can reduce Quality Assurance (QA) costs as well as
the cost of expensive field-test failures [14]. At run time, our
techniques can detect unusual elements in executions before
an error results in an outwardly-observable failure mode,
providing the opportunity to stop the system or put it into
a fail-safe mode. There are many use cases for alerts about
unusual software behavior, intended or otherwise, including
putting a critical system into a failsafe mode while a potential
error is investigated [4], robustness testing [2], [15], and
intrusion detection [16]–[18]. Additionally, LLANALYZER is
language-independent and operates at the binary execution
level, without a need for source code, fitting the needs for
analysis of many systems in the ARS domain.

Our work is complementary to previous work that has
attempted to detect faulty program executions, some of which
does so by establishing patterns of program behavior. Auto-
mated invariant detection techniques [8], [19]–[23] and sta-
tistical debugging techniques [24]–[27] automatically identify
properties that hold true over all correct executions of a
program and identify bugs via violation of those invariants.
However, such techniques typically require source code, can
struggle to scale, or have other limitations which reduce their
usefulness in complex autonomous systems. Formal verifica-
tion of cyber-physical systems is powerful, but its practical
application to entire real systems is limited. Models can
include assumptions that do not necessarily hold true, have
inadequate modeling of the physical world, and can require an
extraordinary investment of time and human effort [6], [28]–
[31]. Related techniques are given a more complete treatment
in Section VI.

We present LLANALYZER as well-suited to robotics ap-
plications and test it on the ARDUPILOT software, which
provides auto-pilot systems for various autonomous vehicles,
as described in Section II-A. We evaluate it on indicative
executions of ARDUPILOT, assessing the accuracy of the
models’ output and evaluating training time and overhead.
We show that LLANALYZER is highly accurate at detecting
executions that exhibit errors and detects those errors with
minimal overhead. We further evaluate the extent to which
overhead impacts observable robot execution.

The main contributions of this work are as follows:
• A tractable approach for using dynamic binary instrumen-

tation as an analysis tool for robotics systems.
• An approach, LLANALYZER, for using dynamic binary

runtime signals as input to supervised machine learning
techniques to detect unusual execution behavior.

• An evaluation of LLANALYZER on simulations of the
ARDUPILOT robotics software, to detect executions that

exhibit unusual behavior.
• An evaluation of the amount of training data and overhead

needed to use LLANALYZER.
• An analysis of the dynamic binary runtime signals most

useful for detecting unusual behavior in ARDUPILOT.
• An analysis of the effects of delays on the execution

behavior of HUSKY, in support of the use of dynamic
instrumentation as a tool for analyzing timing-critical
systems.

II. BACKGROUND AND MOTIVATION

This section provides background for our work, including
laying out details of the programs on which we evaluate our
techniques: ARDUPILOT and HUSKY. It also walks through a
motivating example, based on one of the experimental scenar-
ios we evaluate for ARDUPILOT, and provides an introduction
to Dynamic Binary Instrumentation (DBI).

A. The Subject Systems

a) ARDUPILOT: We run the majority of our experiments
on the ARDUPILOT system.1 This is an open-source project,
written in C++, with autopilot systems that can be used with
various types of autonomous vehicles. It runs a control loop
architecture. ARDUPILOT is very popular with hobbyists, pro-
fessionals, educators, and researchers and has approximately
678 thousand lines of code and over 50 thousand commits in
its GitHub repository.2

ARDUPILOT provides a rich ground on which to test
robotics systems. It is sufficiently complex to be useful in
the real-world. There is a wealth of information about bugs
encountered in real world usage, both in the version-control
history and in the academic literature [13]. We evaluate
LLANALYZER on ARDUPILOT in simulation, using the in-
cluded software-in-the-loop simulator. We use a customized
test harness that enables coordinated control over simulations.

For explanation and clarity, we present a simplified
overview of relevant features of ARDUPILOT’s operation:
ARDUPILOT executes startup commands to prepare the con-
troller and start the autonomous vehicle. Then, if the system
is in autopilot mode, the controller operates on a control
loop. In practice, this means that the controller becomes
ready to receive commands, one at a time, and executes them
autonomously.

b) HUSKY: We evaluate the timing experiments on
HUSKY.

The HUSKY unmanned ground vehicle by Clearpath
Robotics3 is a real world robot with an extensive simulation
infrastructure. It is rugged, designed to be deployed in uneven
terrain, and it is capable of carrying and integrating with
a variety of input sources (sensors) and actuators. Husky is
popular among researchers for its straightforward design and
real world usage history.

1http://ardupilot.org
2https://github.com/ArduPilot/ardupilot
3https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/

http://ardupilot.org
https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/


3

B. Motivating Example

As a motivating example, we present a memory corruption
bug in ARDUPILOT, specifically the ARDUCOPTER software
for autonomous control of airborne vehicles. The example we
present here is based on a fault we seeded in early experiments
with ARDUCOPTER.

For each valid command received, the controller executes
corresponding code, as defined in COMMANDS LOGIC.CPP.
In this example, the code corresponding to a particular com-
mand — MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT
— in COMMANDS LOGIC.CPP is seeded with a buffer over-
flow. This does not cause an externally-noticeable issue
until the code corresponding to a different command —
MAV_CMD_NAV_PAYLOAD_PLACE — attempts to read the
data in the location that the overflow had written to.

At a low-level, looking at the pattern of memory writes can
reveal the difference between the executions in which memory
is corrupted and the executions in which it is not. For example,
in the execution of the code corresponding to the command
in which the memory is corrupted, there will be writes to
memory addresses that are not usually written to in that part
of the program. There may also be an unusually high number
of memory writes. In addition, the difference may show up in
other low-level indicators that we do not intuitively associate
with buffer overflows.

LLANALYZER uses machine learning techniques to look at
all of the low level data collected by SIGNALSEER together.
This gives us the benefit of not needing to know in advance
which of the indicators may be relevant to any given bug.

In addition, monitoring low-level signals has the potential
to detect this issue before there is an externally-visible
problem by analyzing data collected after the buffer
overflow is written but before the program gets to
the code in which the corrupted memory is accessed.
If we collect signals through the execution of the
command MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT
but analyze them before the execution of
MAV_CMD_NAV_PAYLOAD_PLACE, the approach has
the potential to detect the problem that has already been set
up but has not yet caused any externally-observable effects.
This flexibility can allow LLANALYZER to detect errors
before they manifest as user-observable crashes.

C. Dynamic Binary Instrumentation

Dynamic Binary Instrumentation (DBI) works by analyzing
a System Under Test (SUT) at execution time. The DBI
analysis tool inserts code — instrumentation — that analyzes
the SUT, to be run while the SUT runs. Because DBI works
at runtime, it can encompass any code called by the subject
program, whether it be within the original program, in a
library, or elsewhere [9], [10], [32].

As a dynamic binary instrumentation framework,
VALGRIND4 allows tools based on the platform to record data
about low-level events that take place during a program’s
execution. Tools based on VALGRIND can have significant

4http://valgrind.org/

Fig. 1. General Overview of the Supervised Learning Approach

overhead, although optimizations can reduce that overhead.
For example, running the example tool, LACKEY, and
memory checking tool, MEMCHECK, that are distributed
with VALGRIND on a simple command in a basic LINUX
utility results in a 404x and 383x overhead, respectively,
as measured by execution time. Our custom tool based on
VALGRIND incurs 186x overhead on this same command.
The overhead for these tools on ARDUPILOT is significantly
smaller, as discussed in Sections IV-D and IV-E, inspiring
the use of DBI for robotics systems. We describe engineering
considerations that make it possible to use a VALGRIND tool
on a robotics system in Section III-B.

III. APPROACH

In this section, we describe our approach for identifying
software errors using supervised learning models built over
low-level dynamic signals. We envision this technique — LL-
ANALYZER— to be used either at development time or during
field testing. At development time, LLANALYZER can be used
on robot executions in simulation, to detect potential errors
before deployment on real hardware. In deployed hardware
during field testing, LLANALYZER can be used to issue alerts
regarding probable software errors, which can be addressed
by putting the software or system into a fail safe mode while
the problem is addressed.

We explain LLANALYZER with reference to Figure 1,
which lays out the architecture of the approach. We begin by
generating a corpus of data that includes software executions
that exhibit an error and executions that do not. Details about
options for generating this corpus are in Section III-C. For the
purpose of the experiments in this paper, we begin generating
the corpus with with a base version of the SUT. From the
base version, we generate mutant program variants using a
systematic mutation approach. We also have a set of program
inputs, which we can think of as defect-revealing inputs and
non-defect-revealing inputs. As illustrated in Figure 1, each
program variant is executed with each input.

We monitor these executions with a custom dynamic binary
analysis (DBI) tool — SIGNALSEER— as described in Sec-
tion III-A. The tool produces a summary of each execution,

http://valgrind.org/


4

which consists of a set of counts and extremes of various
events that occur at runtime. We call these pieces of data
signals.

When each execution runs with a given input, we assign it
a label of pass or fail, corresponding to whether the execution
exhibited expected behavior. These labels are necessary as
input to the supervised learning algorithms we use. We also
use the labels to evaluate the success of our techniques. Using
labeled data as input is a common technique, and labels for
training data can be obtained in many ways.

We use the sets of signals as input to a supervised machine
learning algorithm. This algorithm generates a predictive
model. The predictive model takes, as input, test data —
signals from executions that were not included in the data used
to build the model. The model outputs a boolean prediction
in the form of a 1 or 0 as to whether each of those sets of
signals corresponds to an execution that exhibits an error.5

A. Collecting Signals with Dynamic Binary Instrumentation

To record low-level information about program executions,
we developed a custom tool — SIGNALSEER— based on the
VALGRIND framework,6 version 3.14. As a DBI framework,
VALGRIND allows tools based on the platform to record data
about low-level events that take place during a program’s
execution. Examples of such low-level events are the execution
of a single instruction or a single load from memory into a
register.

We use DBI to collect signals that summarize the behavior
of the execution monitored. The signals are chosen to be
potentially informative while being easy to collect within the
VALGRIND framework and incurring very little calculation or
data storage overhead at runtime. We discuss these choices
in Section III-B. These counts result in a summary of each
execution, consisting of a list of numbers, corresponding in
order to the set of properties measured.

Our DBI tool outputs these summaries at intervals through-
out the execution. Each signal is measured cumulatively from
the beginning of the execution. By analyzing the summaries
of signals at each interval, our technique can detect executions
that exhibit defects that occur in the execution time covered by
each interval. As discussed in Section II-B, unusual low-level
behavior can occur well before an error is outwardly-visible.

We collect the same measurements for each summary, so the
summary can be treated as a feature vector, suitable for input
into machine learning algorithms. We aggregate the feature
vectors over many executions into two-dimensional matrices,
representing the overall data set.

In all, this customized tool outputs 26 signals. These signals
include: counts of machine instructions executed, basic blocks
entered and exited, load and store instructions executed, and
events tracked internally by VALGRIND; and minima, maxima,
and ranges of addresses of machine instructions executed and
data loaded and stored. It is possible to obtain accurate results

5The word, “prediction,” and related terms are terms of art in machine
learning. Here, they refer to any time a machine learning algorithm makes a
determination on previously-unseen data.

6http://valgrind.org/

with a subset of these signals, as discussed in Section IV-F.
Our experiments use all 26 of these signals unless otherwise
specifically mentioned.

B. Minimizing Overhead in Dynamic Binary Instrumentation

One key difficulty in using a dynamic binary instrumen-
tation approach with a timing-sensitive system is that the
overhead of collecting the information changes the timing in
the program execution. For example, ARDUPILOT has several
timeout windows during which it expects certain events to
happen; if they do not, the system aborts. We used several
approaches in tool design to tractably reduce overhead:

Optimize to the basic block level whenever possible. Min-
imizing runtime interruptions is key to reducing instrumenta-
tion overhead. One established approach is to restrict inter-
ruptions to once per basic block, rather than every instruction.
At the basic block level, it is possible to collect a summary
of the events that occur within that block. However, not all
information we wish to collect is available at the basic block
level. For example, addresses that are computed at runtime
may not be available. We, therefore, optimize instrumentation
to the basic block level when all of the information we want is
available at that level, such as when the block does not rely on
any addresses computed at runtime. Otherwise, we instrument
instructions within the block individually.

Eliminate excess data storage at instrumentation site. The
amount of data associated with instrumentation (stored and
retrieved at runtime) can drastically influence the overhead.
We experimented with an approach that collected richer data
by storing histograms of many data points. These included
instruction addresses, memory addresses, and data values,
along with more esoteric data; we used the histograms to
calculate summary signals, such as the most frequent value.
However, the memory usage and library calls involved in
storage and updating the histograms slowed the instrumen-
tation dramatically. Ultimately, simple tallies that involved a
minimum of data storage and operations at runtime proved
more tractable.

Avoid high-overhead Application Programming Interface
(API) calls and computation at instrumentation sites.
Because we must add many instrumentation sites, the over-
head at each site must be minimal. Fortunately, not all low-
level events are equally expensive (in time and data) for
VALGRIND to measure. For example, counts of information
that require additional calls into the VALGRIND API, such
as some branch prediction information, are more expensive to
collect than counts of information already available to the tool
at an instrumentation site, such as the address of the current
instruction. We restrict the events we measure to those that can
be measured with a minimum of added overhead. For example,
we do collect the address and type of each instruction. We
do not collect data related to the order of memory events
that would be useful if we were explicitly tracking memory
exceptions.

Overall, instead of tracking high-overhead information, we
take best advantage of each instrumentation site by collecting

http://valgrind.org/


5

as much information as possible that is available with minimal
calculation. To do this, we build SIGNALSEER on top of
VALGRIND’s NULLGRIND tool, a tool designed to do nothing.
We collect data on events tracked by VALGRIND internally
because those data are readily available. We keep a count of
various types of instructions instrumented, even when those
types of instructions are internal VALGRIND bookkeeping
instructions that do not correspond to machine instructions. We
track these because it does not cost any additional overhead,
and they may correspond to useful information.

C. Corpus Generation

Using LLANALYZER requires a corpus of labeled data
for supervised learning, which we discuss in Section III-D.
Generating this corpus of data requires a SUT that can be
executed under DBI and a way of labeling each execution as
exhibiting intended or unintended behavior. The corpus must
contain at least some data corresponding to executions with
intended behavior and some data corresponding to executions
with unintended behavior. Examples from both classes are
needed for the two-class supervised learning algorithms used
as a part of LLANALYZER.

There are many possible ways to generate a set of executions
of the SUT that includes both well-behaved and misbehaving
executions. Some SUTs contain faults in their code as written
and, when executed with an appropriate input, will exhibit
errors. Another way to obtain executions that exhibit errors is
to seed faults into the underlying program code. Again, with
an appropriate input, the execution will exhibit an error. Ways
to seed faults include mutating the programs using techniques
common in mutation testing or seeding a known error into the
code. One way to seed a realistic error is to use the edit history
of a program’s source code to find a change that repaired a
bug, then re-introduce the corresponding ‘buggy’ code into the
SUT [33]. Note that obtaining faulty executions by seeding
faults does not limit LLANALYZER to only programs for
which source code exists because faults can be seeded at any
level, including in machine code. An additional way to obtain
executions that exhibit errors is to include several versions
from the version history of the same program, as long as those
versions are sufficiently similar to one another to compare
executions.

For our experiments, we generate the corpus by taking the
base program as ArduPilot 3.6.7. We generate mutants using
established techniques in mutation testing, with a primitive set
of source code mutation operators used in prior studies [34].
We construct each mutant by applying a single mutation
operator to a location in a core source file. We construct
one such mutant for every combination of applicable location
and mutation operator in several core source files. We use
BugZoo [35] to create an ephemeral Docker container for each
mutant under test. We execute each mutant with a suite of
three inputs, which in the case of ARDUPILOT are known as
missions, and discard data for any mutants that fail to compile
and for any executions that crash immediately when executed.
This results in 1778 execution traces. We then use a simple
oracle to classify the traces as correct (pass) or erroneous

(fail) based on the simulated physical location of the robot
during the mission. Following this classification, we are left
with 1658 correct and 120 erroneous traces. To avoid issues
of class balance which can bias machine learning training, we
balance all data by duplication of pseudo-randomly chosen
data points in the minority class. We choose to balance by
duplication because it does not reduce the size of the data
set; our preliminary experiments show comparable results with
balancing by deletion, when the data set is large enough.
We balance the data separately for each model we build,
and balance each fold separately for K-fold cross validation,
to avoid the possibility of duplication resulting in the same
summary appearing in the training corpus and test inputs.

D. Supervised Learning

Supervised learning is a technique for developing machine
learning models to classify data. We use two-class supervised
learning, which means that the data falls into two categories.
In this case, the categories are pass (0), which corresponds to
executions that exhibit intended behavior, and fail (1), which
corresponds to executions that exhibit unintended behavior.
A supervised learning algorithm takes, as input, labeled data
in the form of feature vectors — which in this case are the
summaries output by our custom DBI tool SIGNALSEER—
each of which has a corresponding 0 or 1, indicating the
category to which the corresponding data belongs. That is,
data that came from executions that were known to exhibit
an error have the label 1, while the rest of the data came
from executions that were not known to exhibit an error. We
used a simple oracle of our own design to generate the labels,
otherwise known as ground truth. This input data is known as
training data. The labels for training data could come from the
use of test cases, human observation of execution behavior, or
other sources of knowledge of whether an execution is correct.

The supervised learning algorithm outputs a classifier. The
classifier takes, as input, test data which consists of feature
vectors – summaries – in the same form as those used to
train the classifier but that were not used to train the classifier.
The test data does not include labels. The classifier outputs
predictions – determinations as to which class each data point
belongs to. The term predictions is a term of art in machine
learning that refers to the output of a classifier; it does not
necessarily refer to future events. We assess the accuracy of the
classifier by comparing the predictions to the known ground
truth, which we obtain from our simple oracle. We discuss
accuracy metrics in Section IV.

For supervised learning, we use use out-of-the box algo-
rithms from Scikit Learn, version 0.15.2.7 Specifically, we use
the Decision Tree classifier available from Scikit Learn. Based
on an informal survey of the options available from Scikit
Learn, we found that the Decision Tree classifier performs
similarly to or better than other algorithms when used as a
part of this technique, across a wide range of programs and
data. We use the default parameters of the algorithm.

7http://scikit-learn.org/

http://scikit-learn.org/


6

E. Approach and Methodology for Timing Experiments

To evaluate the extent to which timing delays deform the
observable execution of an ARS, we use a different set of
experiments, in which we insert artificial timing delays in a
controlled manner.

For a given robot, we establish a set of commands, called a
mission. For the purposes of these experiments, each mission
is represented as a series of destinations in three dimensional
space (two dimensional space for robots that move in only
two dimensions), with the final destination being a return to
the first destination. We create a series of missions within a
simulation environment for each robot.

The experiments consist of running two types of executions:
nominal baseline executions in which the system is run
without modifications and experimental executions in which
the system is run with artificially-inserted timing delays.

a) Nominal Baseline Executions: To establish a nominal
baseline — a baseline for how a robot behaves under normal
conditions, without any artificially-inserted delays — we run
each unmodified ARS repeatedly on each of its missions.

The executions to establish a nominal baseline serve several
purposes in these experiments. First, the nominal executions
establish a baseline for how often the unmodified ARS fails.
ARSs often behave in a nondeterministic manner, even in
simulation. There can be nominal (unmodified) executions
that fail in significant ways, such as failing to reach one or
more waypoints; getting “stuck” and discontinuing attempts to
follow the mission (e.g., when the perception system cannot
determine the robot’s location); software crashes; or liveness
failures (e.g., hitting a timeout). The number of failures in the
nominal, unmodified system establishes a point of comparison
by which to measure the failure rate of the artificially-modified
system. As a generalized approximate metric of these failures,
we use the percent of executions in which the robot never
reaches the final waypoint. This metric allows comparison
between the failure rate in nominal executions and the failure
rate in the modified system.

Second, the nominal executions establish a representative
trajectory and other execution characteristics against which the
characteristics of modified executions can be compared. Other
potential characteristics of interest include the time taken for
completion of the mission and the rate at which messages are
sent on various topics.

Third, the nominal executions establish the range of varia-
tion in nominal trajectories and other execution characteristics.
As mentioned above, there is significant nondeterminism in the
observed behavior of simulated robots, even when unmodified.
Establishing the range in the nominal executions provides a
basis to tell when the modified, experimental executions are
within the range of nominal behavior or outside of it.

b) Experimental Executions: For the experimental exe-
cutions, we add controlled artificial delays to the execution
of the ARS code. The experimental parameters include: the
points within the program at which these delays are inserted,
the number of insertion points, and the length of delays. The
method of inserting delays is set out below.

Experimental executions are evaluated against the nominal
baseline and against the set of waypoints that the simulated
robot is directed to reach.

1) Subject Systems: In addition to the ARDUCOPTER
ARDUPILOT system, which features heavily in the other ex-
periments in this paper, we also evaluate on a Robot Operating
System (ROS)-based system: HUSKY, to demonstrate the
generalization of the timing absorption to other ARS.

2) Method of Inserting Delays: This subsection explains
how artificial delays are inserted for the experimental execu-
tions.

a) ARDUCOPTER: For the ARDUCOPTER experiments,
the artificial delays are introduced by modifying source code
in C++ and inserting SLEEP statements. We identify the
program point before each return statement in all .CPP files in
the ARDUPILOT/ARDUCOPTER source code directory. Each
of these program points was a possible location to insert a
delay. The choice of whether to insert a delay at each point
was determined probabilistically, with a weighted coin flip.
Different modified versions of the code were created, 8 each
of which had (a) a fixed coin flip weight and (b) fixed delay
amount added at each delay location. The weights for the
weighted coin flip ranged from 0.1 to 1.0, with 1.0 meaning
a delay was inserted before every return statement, and the
length of each delay ranged from 0.001953125 seconds to 8
seconds, with delay lengths chosen as powers of 2.

b) HUSKY: We conducted similar experiments on
HUSKY, which is a system based in ROS. For the ROS exper-
iments, the artificial delays are introduced at communications
barriers on ROS topics, taking advantage of the architecture
of ROS-based systems.

To give a simplified overview of the architecture of ROS-
based systems as they relate to these inserted delays, these
systems consist of various nodes that communicate with each
other by sending messages over a bus, as shown in Figure 2.

A publish-subscribe system determines which nodes receive
which messages. A node can publish messages to a topic. To
receive those messages, another node subscribes to the same
topic. Generally, each topic only accepts messages of one type.
ROS makes it easy to query a running system to find out
configuration information such as (a) the topics in that system;
(b) the type of messages published to each topic; (c) the node
or nodes that publish to a given topic; and (d) the node or
nodes that subscribe to the given topic. This information makes
it easy to infer certain properties about the relationships among
nodes and the purposes of particular messages. We use this
information to choose the topics to which we add artificial
delays. For example, in HUSKY, we run a set of experiments
that delay each topic published by or subscribed to by the
/MOVE BASE/ navigation node. We make this choice because
navigation is a vital function, and we expect disruptions in
navigation to have an effect on robot behavior. By contrast,
we do not conduct experiments in which we delay the topics
related to displaying logging messages, as we do not expect
these delays to affect the robot’s functional behavior.

8We used the tool COMBY for these program transformations. https:
//comby.dev/

https://comby.dev/
https://comby.dev/


7

Fig. 2. Simplified ROS Architecture

Having chosen a TOPIC or TOPICS to delay on a particular
ROS system for a particular set of experiments, we insert
delays on these topics by intercepting messages using topic
renaming. ROS allows configuration of nodes such that topics
can be renamed. For example, if Node A is originally designed
to publish a topic named /A VERY GOOD TOPIC, we can
change the system’s configuration so that when published,
the topic is known in the namespace as something else,
such as /A VERY GOOD TOPIC INTERCEPTED. Because the
topic now has a different name than other components in the
system expect, the node or nodes that would have originally
subscribed to the topic will not receive the messages pub-
lished on the new topic. However, the delay infrastructure
includes an additional node to be included with the ROS
system. This node reads each message on a given topic,
in this case /A VERY GOOD TOPIC INTERCEPTED. It then
waits for the designated amount of time and then republishes
the same message on the topic that was originally expected:
/A VERY GOOD TOPIC. The nodes that originally expected
the messages on this topic from Node A now receive the same
messages from the delay node.

Delays range in length from 0.00390625 seconds to 1
second, chosen as powers of two, and were inserted for every
message in a topic. This range was chosen after a parameter
sweep revealed that they result in a representative range of
behaviors.

IV. EVALUATION

Using ARDUPILOT 3.6.7 as a case study system, we evalu-
ate claims in two major areas: (A) Performance and accuracy,
and (A) Effects of overhead. we ask the following research
questions.

Performance and Accuracy:
• RQ1: To what extent can LLANALYZER accurately detect

executions that exhibit errors?
• RQ2: How does the volume of training data used to build

the model affect the accuracy of the model in detecting
executions that exhibit errors?

• RQ3: To what extent can LLANALYZER accurately detect
executions that exhibit errors before reaching the end of
the execution?
Effects of Overhead:

• RQ4: How much overhead is introduced by DBI?
• RQ5: What effects do delays have on observable robot

performance?
• RQ6: To what extent does feature reduction affect over-

head and accuracy?
We run all experiments on an Ubuntu 16.04 virtual machine

with 4 virtual cores and and 11GB RAM, running on a physi-
cal machine with an Intel(R) Xeon(R) E5620 CPU (2.40GHz).

We assess the performance of the models produced by
LLANALYZER with respect to their ability to correctly and
generally label a set of traces. Given a set of test data, known
labels, and the classifier’s predictions on the test data, the
predictions can be evaluated into true and false positives and
negatives (TP, FP, TN, and FN). Subsequent metrics include:

• Accuracy (Acc) The portion of samples whose predicted
labels match the ground-truth labels: (TP+TN)/(TP+
FP + TN + FN).

• Precision (Prec) The ratio of returned labels that are
correct: TP/(TP + FP ).

• Recall (Rec) The ratio of true labels that are returned:
TP/(TP + FN).

• F-Score (F) The harmonic mean of precision and recall,
which guards against trivially maximizing precision or
recall by predicting the labels to be all negative or all
positive. Calculated as: 2∗((Prec∗Rec)/(Prec+Rec)).

Unless otherwise stated, we use K-fold cross-validation,
with K=10 for all sample sizes greater than or equal to 100.
For smaller sample sizes, we use the largest K that ensures
each fold has at least 10 points. We report the arithmetic mean
across all folds.

A. RQ1: Error Detection

We answer RQ1: To what extent can LLANALYZER accu-
rately detect executions that exhibit errors?



8

TABLE I
ACCURACY METRICS FOR SUPERVISED LEARNING USING DATA AT THE

END OF EXECUTION

Mean Mean Mean Mean Num.
Acc. Prec. Rec. F-Score Samples

0.95 0.99 0.90 0.94 1778

TABLE II
ACCURACY METRICS FOR SUPERVISED LEARNING TRAINED ON A PRIOR
VERSION (ARDUPILOT 3.6.6) AND TESTED ON A SUBSEQUENT VERSION

(ARDUPILOT 3.6.7).

Mean Mean Mean Mean Num. Num.
Acc. Prec. Rec. F-Score 3.6.6 3.6.7

0.90 0.99 0.82 0.90 280 1778

Recall that our overall goal is to determine whether LL-
ANALYZER— an approach that combines dynamic-binary-
instrumentation with machine-learning analysis — is useful
in detecting behavior that exhibits defects in software. This
question evaluates the overall suitability of this approach to
detect errors in completed program executions. To answer
this question, we take the approach described in Section III
and evaluate it on the data for all executions in our corpus,
as described in Section III-C. For this question, we use the
cumulative signals recorded at the end of each execution.

We measure Accuracy, Precision, Recall, and F-Score, as
described in Section III-D. We report the means across 10-fold
cross-validation. For each metric, higher is better and means
that the technique’s determinations are more accurate.

Table I shows results. We find that we can build a strong
classifier that detects errors in complete ARDUPILOT exe-
cutions. The precision is nearly perfect, which means that
there are very few false positives. This classifier works across
different defects and missions, supporting its generality.

1) Using a Prior Release to Detect Errors on a Subsequent
Release: We ask a related question: Can a model trained on
executions of a prior release of the software under test identify
errors in a subsequent release of the software?

We answer this question by training a model on a set
of executions on ARDUPILOT version 3.6.6 and testing it
on executions from version 3.6.7. The model trained on
ARDUPILOT 3.6.6 uses 280 data points drawn from sampling
185 mutations across three missions. We do not use K-fold
cross validation to assess the accuracy of these models because
the training and test data are drawn from different data sets.
We test on 1778 data points from the data set drawn from
executions of ARDUPILOT 3.6.7. Results are in Table II.

By comparing the results for this experiment (Table II) with
the the accuracy for the model trained and tested from the
data drawn from the same set (Table I), we find that the
accuracy metrics show that this model is highly accurate, and
only slightly less accurate than a model trained and tested on
data drawn from only one version of the software. Part of
the decrease in accuracy may be attributable to the smaller
number of data points used to train this model, rather than to
the different version.

Fig. 3. Supervised Learning with Varied Amounts of Data

This results illustrates a promising use case for LLANA-
LYZER in the software development pipeline. While develop-
ing software, a model can be trained on executions from a
prior release of the software. While developing subsequent
versions, the model can be used to assess executions from the
changed software for errors such as regressions. This approach
should apply to many situations in which the software under
development is similar to its prior release.

B. RQ2: Amount of Training Data and Accuracy

We answer RQ2: How does the volume of training data used
to build the model affect the accuracy of the model in detecting
executions that exhibit errors? Recall that our overall goal
is to determine whether LLANALYZER is useful in detecting
software executions that exhibit errors. This question evaluates
the subgoal of determining how much data is necessary to
make useful predictions. To answer this question, we compute
the analyses used to evaluate RQ1 in Section IV-A with
varying amounts of data.

We show results for all accuracy metrics in Table III and
graph results for the F-Score metric in Figure 3. Higher is bet-
ter. The X-axis represents the total number of samples included
for supervised learning. (The samples are split between train-
ing and testing samples for K-fold cross-validation.) While
results for 200 and 300 are middling, F-Score quickly rises to
0.90 at 400 samples and stays above 0.80 at all sample sizes
above 400. These results show that LLANALYZER can ob-
tain reasonable accuracy with comparatively few data points.
Computing 400 data points would take approximately 1274.55
minutes or less than a day. The F-Score does not fall below
0.90 after 1500 data points. Computing 1500 data points would
take approximately 4779.55 minutes or a little more than three
days. Such training time could become part of the workflow for
a development or testing procedure. This is especially the case
because, as demonstrated in Section IV-A1, such a model does
not need to be trained on an identical version of the software to
be effective, so a model built on an earlier version of software
can continue to be used for subsequent development.



9

TABLE III
ACCURACY METRICS AND APPROXIMATE TRAINING TIME FOR VARYING

NUMBERS OF DATA POINTS.

Num. Mean Mean Mean Mean Data Gen.
Samples Acc. Prec. Rec. F-Score Time (mins)

200 0.90 0.50 0.43 0.46 637.27
300 0.89 0.65 0.59 0.60 955.91
400 1.00 0.90 0.89 0.90 1274.55
500 0.94 0.89 0.78 0.82 1593.18
600 0.93 0.89 0.76 0.81 1911.82
700 0.92 0.98 0.86 0.91 2230.45
800 0.98 0.99 0.96 0.97 2549.09
900 0.96 0.99 0.93 0.96 2867.73

1000 0.91 0.99 0.84 0.89 3186.36
1100 0.94 0.99 0.89 0.92 3505.00
1200 0.96 0.99 0.92 0.95 3823.64
1300 0.89 0.98 0.80 0.88 4142.27
1400 0.90 0.99 0.82 0.87 4460.91
1500 0.94 0.98 0.90 0.93 4779.55
1600 0.93 0.99 0.88 0.92 5098.18
1700 0.92 0.99 0.85 0.90 5416.82
1800 0.93 0.99 0.86 0.92 5735.45
1900 0.97 0.99 0.95 0.97 6054.09
2000 0.97 0.99 0.95 0.97 6372.73

TABLE IV
ACCURACY METRICS FOR SUPERVISED LEARNING USING DATA AT

INTERVALS DURING EXECUTION

Ins. Mean Mean Mean Mean Num.
Exec. Acc. Prec. Rec. F-Score Samples

10000 0.50 0.00 0.00 0.00 1778
20000 0.50 0.40 0.80 0.53 1778
30000 0.57 0.56 0.36 0.42 1778
40000 0.57 0.59 0.35 0.44 1778
50000 0.56 0.63 0.28 0.37 1778
60000 0.58 0.63 0.30 0.39 1778
70000 0.56 0.67 0.32 0.40 1778
80000 0.56 0.54 0.45 0.44 1778
90000 0.55 0.52 0.49 0.47 1778

100000 0.57 0.53 0.58 0.52 1778
110000 0.52 0.48 0.21 0.29 1778
120000 0.52 0.48 0.09 0.15 1708
130000 0.71 0.19 0.12 0.15 989

C. RQ3: Finding Errors Before the End of Execution

We answer RQ3: To what extent can LLANALYZER accu-
rately detect executions that exhibit errors before reaching the
end of the execution?

Recall that our overall goal is to determine whether LLAN-
ALYZER is useful in detecting software defects. This question
evaluates the subgoal of determining how early in execution
LLANALYZER can find errors, only using data that is collected
before the end of execution. In applications in the field, it is
important to find defects before they manifest in observable
crashes or other potentially-dangerous behaviors. This could
correspond to a realistic situation in which we have training
data from known good and bad executions, from which we
trained a model, and we want to observe a new execution and
put it in to failsafe mode if our technique classifies the data
as corresponding to bad behavior.

To answer this question, we output summaries from our
DBI tool every 10,000, instructions, on the same corpus as
used for RQ1. We build predictive machine learning models

at each interval, for the data from all executions that reached
that interval. We chose 10,000 machine instructions as an
interval after which to output execution summaries, to trade off
between overhead and fidelity. It corresponds to approximately
eleven seconds of execution.

We measure Accuracy, Precision, Recall, and F-Score, as
described in Section III-D. We report the means across 10-fold
cross-validation. For each metric, higher is better and means
that the technique’s determinations are more accurate. Table IV
shows results.

Before the end of execution, the maximum F-Score is 0.52,
which does not reflect high predictive power. However, the
poor performance may be due to our choice to output infor-
mation at boundaries determined by the number of instructions
executed. In Section IV-F and Table IX, we analyze the
importance of various features to the predictive power of our
models. The count of instructions analyzed and several counts
that may be related, are highly predictive. Our choice to keep
the number of instructions analyzed constant in computing
each model before the end of execution may have inadvertently
removed variation in the most predictive signals. This suggests
that a similar approach may have a better chance of success
by looking at more natural boundaries based on properties of
the software.

D. RQ4: Overhead

We answer RQ4: How much overhead is introduced by
DBI?

Recall that our overall goal is to determine whether LLAN-
ALYZER is useful in detecting software executions that exhibit
errors. This question evaluates the subgoal of determining
the amount of overhead involved in making these predictions.
Knowing the amount of overhead aids in determining whether
the technique will be useful in various real-world situations.

To answer this question, we measure the overhead of
SIGNALSEER tool on executions of ARDUPILOT. To compute
the overhead, we ran ARDUPILOT with a representative input
mission and mutation several times, with each of three vari-
ations on instrumentation: No instrumentation, VALGRIND’s
example LACKEY tool, and our custom tool SIGNALSEER
based on the VALGRIND platform.9 We timed the seconds
elapsed for each execution. We measured a 24% increase in
execution time over no instrumentation when we instrumented
ARDUPILOT with LACKEY. However, to the resolution we
measured, ARDUPILOT running with our custom instrumenta-
tion tool did not take longer to run than when running without
instrumentation. Under these circumstances, the overhead of
our custom tool is negligible.

Recall that running a similar test on a standard Linux
utility produced overheads of: LACKEY: 404x; MEMCHECK:
383x; and our custom tool: 186x. These numbers show that
dynamic binary instrumentation can incur far less overhead, as
measured by time, in robotics systems than in standard CPU-
and I/O-bound programs.

9We do not evaluate VALGRIND’s better-known MEMCHECK tool because
of a technical limitation.



10

E. RQ5: Effects of Delays on Robot Behavior

We answer RQ5: What effects do delays have on observable
robot performance?

Recall that our overall goal is to determine whether LLAN-
ALYZER is useful in detecting software executions that exhibit
errors. This question evaluates the subgoal of evaluating the ef-
fects of overhead on the behavior of the robot. When overhead
can be absorbed with little observable effect, LLANALYZER is
most useful. To do so, we evaluate the following sub-questions:

RQ5a:To what extent do the presence of timing delays in
robot systems have an effect on observable behavior
as defined by a set of performance metrics?

RQ5b:Under what circumstances do timing delays lead to
system crashes?

As shown above, Autonomous and Robotics Systems
(ARSs) are amenable to detection of faults by the use of low-
level program monitoring. One primary concern about using
these types of monitoring techniques is that the techniques
can cause high overhead. Cyber-Physical Systems (CPSs) such
as ARSs can be sensitive to overhead that interferes with
the timing of events — a missed deadline or a sequence of
messages received in an unexpected order can cause the system
to fail. However, at the same time, these systems are par-
ticularly prone to variability in operating conditions because
of their interaction with the real world and the unpredictable
conditions therein. There are many situations in which the
architectures of CPSs can absorb timing delays, when they
take place during times when the system would otherwise be
spent waiting for physical events or communication from other
parts of the system.

This research question evaluates the nature and extent of
the timing delays that ARSs can absorb. To do so, we conduct
a series of experiments in simulation to gain a more precise
understanding of the amount and nature of delays that these
systems can absorb. The nominal executions examine the
behavior of an unmodified simulated ARS while the executions
with artificial delays examine the behavior of the same systems
when message passing is delayed for various topics.

a) Timing Delay Metrics: To evaluate the effects of
timing delays on observable robotics behavior, we use the
following metrics, based in Euclidean distance, completeness,
and timeliness.

• The Euclidean distance between the final position of the
robot and the final waypoint or home point.

• The sum of closest Euclidean distances on the trajectory
from each waypoint.

• The mean of the closest Euclidean distances on the
trajectory from each waypoint.

• Whether the execution navigates to each waypoint and
returns home.

• The amount of time before completion of the execution
(either successful or unsuccessful).

1) Effects on Observable Behavior: RQ5a: To what extent
do the presence of timing delays in robot systems have an ef-
fect on observable behavior as defined by a set of performance
metrics? To evaluate RQ5a, we look at the metrics enumerated
above.

The clearest and most obvious effects on observable ex-
ecution are crashes, both software crashes and crashes in
physical space. We evaluate these deviations separately in
RQ5b (Section IV-E2).

a) HUSKY: Table V shows, for the nominal and
artificially-deformed HUSKY executions, how much their Eu-
clidean distance deviates from the waypoints the robot had
been instructed to visit. Data for each mission is listed on
its own line. For the purposes of this chart, we look at the
trajectories of all experimental runs that reach all of the
waypoints for a given mission. We take the robot’s minimum
distance from each waypoint for each of these experimental ex-
ecutions. We then take the mean, over all of these experimental
executions, of the minimum distance for each waypoint. The
same information is provided for the nominal executions for
comparison. Note that the experimental executions include
varying amounts of delay and delays on different ROSTOPICS.
We will explore the effects of different delay amounts and
delays on different topics in Table VI.

Note that in Table V, the mean closest distance to the
waypoint is always smaller in the nominal group (which is
taken from unmodified executions) than in the experimental
group (which is taken from executions with delays). This
shows that HUSKY’s operation in simulation is sensitive to
artificial delays. However, the mean closest distance for each
waypoint in the experimental data is almost always within
a reasonable tolerance — the robot gets reasonably close to
its target. Furthermore, the missions and waypoints for which
the distances are higher for the experimental runs are also
the same missions and waypoints for which the distances are
higher for the nominal runs. For example, for M1, the smallest
mean distance from the waypoint is for W1 while the largest
is for W5, in both the nominal and the experimental data.
This implies that the delays enhance the existing effects of
which waypoints HUSKY finds easier or difficult to navigate
to. While the closest distance from the destination waypoint
usually increases over subsequent waypoints, that is not always
the case.

2) When Delays Cause Software Crashes: RQ5b: Under
what circumstances do timing delays lead to system crashes?

To evaluate RQ5b, we look at several indicators of soft-
ware crashes that can be observed from experiments. It is
interesting to find out when timing causes a system crash
because system crashes have different practical implications
for recovery techniques than other failures, such as incorrect
trajectories or delays. System crashes can lead to, for example,
losing contact with the system or damage to the hardware.
Under some circumstances, a system that has crashed without
hardware damage can simply be restarted. It is important to
separate system crashes from other successful executions so
that we can exclude any trajectories and timing data that are
invalid because of system crashes.

We establish a baseline of software crashes that occur in the
nominal data set. Robotics systems are often nondeterministic
and difficult to simulate and, therefore, even nominal execu-
tions can experience software crashes. We compare the rate
of software crashes in nominal executions against the rate of
software crashes under the experimental conditions.



11

TABLE V
HUSKY: MEAN MINIMUM EUCLIDEAN DISTANCE FROM WAYPOINTS IN METERS FOR NOMINAL EXECUTIONS AND EXPERIMENTAL EXECUTIONS

Mission Distance from Waypoint WP WP
W1 W2 W3 W4 W5 Final Total Mean

Nominal
M1 0.23 0.66 1.65 1.47 2.01 1.10 7.13 1.19
M2 0.08 0.18 0.25 0.15 0.30 0.41 1.37 0.23
M3 0.22 0.38 0.54 0.58 2.85 1.45 6.02 1.00
M4 0.52 1.91 1.78 2.28 1.02 1.92 9.44 1.57
M5 0.39 1.01 1.12 0.57 2.09 2.67 7.86 1.31
M6 0.25 0.31 0.70 0.27 0.76 1.44 3.71 0.62
M7 0.31 0.27 0.28 0.35 0.42 0.55 2.18 0.36
M8 0.28 0.45 0.23 0.98 0.68 0.95 3.57 0.60
M9 0.80 0.53 0.75 0.59 0.83 3.43 6.93 1.16

M10 0.07 0.07 0.08 0.66 1.09 1.91 3.89 0.65

Experimental
M1 1.00 1.20 3.56 2.92 3.61 1.89 14.19 2.37
M2 0.89 0.52 1.67 1.00 1.40 1.12 6.60 1.10
M3 1.85 2.38 2.25 2.34 5.04 3.48 17.34 2.89
M4 1.42 2.83 3.26 3.06 2.03 2.34 14.94 2.49
M5 1.86 2.01 2.48 1.72 3.56 3.73 15.36 2.56
M6 1.03 1.34 2.67 0.79 2.96 2.05 10.83 1.80
M7 1.61 0.86 1.15 1.73 2.21 1.69 9.24 1.54
M8 1.21 2.85 1.87 3.85 2.70 1.93 14.42 2.40
M9 1.41 0.87 1.32 1.07 1.25 3.10 9.02 1.50

M10 2.57 1.73 0.34 2.39 2.68 4.12 13.82 2.30

TABLE VI
HUSKY: MEAN MINIMUM EUCLIDEAN DISTANCE (IN METERS) FROM WAYPOINTS FOR VARIED DELAYS ON MISSION 1, TOPIC

/HUSKY VELOCITY CONTROLLER/ODOM

Delay Distance from Waypoint WP WP
(s) W1 W2 W3 W4 W5 Final Total Mean

Mean
0.0 0.23 0.66 1.65 1.47 2.01 1.10 7.13 1.19
0.00390625 4.45 3.59 10.63 8.84 8.70 4.50 40.71 6.79
0.015625 4.44 3.58 10.61 8.83 8.75 4.51 40.72 6.79
0.0625 4.42 3.57 10.55 8.81 8.66 4.47 40.48 6.75
0.25 4.43 3.59 10.57 8.81 8.65 4.44 40.49 6.75
1.0 4.45 3.60 10.65 8.87 8.73 4.47 40.77 6.80

Standard Deviation
0.0 0.41 1.13 2.62 2.89 3.49 1.80 12.35 2.06
0.00390625 0.86 0.64 1.87 1.65 1.56 0.81 7.39 1.23
0.015625 0.90 0.67 1.88 1.61 1.39 0.77 7.21 1.20
0.0625 0.93 0.71 2.08 1.70 1.67 0.81 7.89 1.32
0.25 0.91 0.66 2.02 1.73 1.68 0.85 7.84 1.31
1.0 0.86 0.63 1.79 1.54 1.47 0.80 7.09 1.18

The presence of a core dump file — such as would be
produced when a segmentation fault occurs — indicates a
system crash The absence of logs that would have normally
been produced during a proper execution indicates a system
crash. If the test harness exits abnormally, we classify that
execution as a system crash.

a) Results: Table VII shows the percent of HUSKY
executions that either crash or do not reach the end goal
(within a tolerance of one meter). For the purposes of these
results, we group all executions that do not reach the final goal
within the established tolerance for any reason. Here, failure to
reach the end goal within the established tolerance is a proxy
for the execution having crashed. It is based on the assumption
that a system crash will occur before the end of the designated
mission and prevent the robot from reaching its goal. There is
also an assumption that, if the robot has gone so badly wrong

that it does not reach its goal within the established tolerance,
it is functionally equivalent to crashing.

F. RQ6: Feature Importance and Overhead

We answer RQ6: To what extent does feature reduction
affect overhead and accuracy?

Recall that our overall goal is to determine whether LLAN-
ALYZER is useful in detecting software executions that exhibit
errors. This question evaluates the subgoals of (1) determining
the low-level signals that best contribute to making accurate
determinations and (2) determining if limiting data collection
to those most informative signals would reduce overhead in
data collection while maintaining accuracy.

To determine which low-level signals have the most pre-
dictive power, we examine the properties of the classifiers we
build to answer RQ1. The trained decision tree classifiers from



12

TABLE VII
HUSKY: PERCENT OF EXECUTIONS THAT CRASH OR DO NOT REACH ALL WAYPOINTS ON MISSION 1, WITH A TOLERANCE OF ONE METER

Topic Percent Failure by Delay Amount
0.0 0.00390625 0.015625 0.0625 0.25 1.00

/gazebo/link states 60.08 2.50 0.83 2.50 5.00 2.50
/husky velocity controller/cmd vel 60.08 3.33 2.50 1.67 4.17 4.17
/husky velocity controller/odom 60.08 2.50 0.83 4.17 0.00 4.17
/imu/data 60.08 0.00 2.50 3.33 3.33 2.50
/imu/data/bias 60.08 1.67 1.67 3.33 1.67 0.83
/navsat/fix 60.08 3.33 1.67 3.33 3.33 0.00

TABLE VIII
HUSKY: MEAN TIME TAKEN (SECONDS) FOR EXECUTIONS THAT REACH (P) AND DO NOT REACH (F) THE FINAL WAYPOINT ON MISSION 1, WITH A

TOLERANCE OF ONE METER

Topic Delays (Seconds)
(abbreviated) 0.00390625 0.015625 0.0625 0.25 1.0

P F P F P F P F P F

/gazebo/link states 27.45 33.81 28.14 33.62 26.97 33.84 27.91 33.67 27.13 33.69
/husky.../cmd vel 27.03 33.77 27.82 33.72 27.74 33.58 27.39 33.76 27.35 33.71
/husky.../odom 27.36 33.77 26.49 33.59 27.42 33.65 n/a 33.61 27.23 33.88
/imu/data n/a 33.67 27.59 33.70 27.60 33.69 27.32 33.85 27.06 33.70
/imu/data/bias 28.07 33.86 27.58 33.66 27.69 33.76 27.63 33.68 28.44 33.58
/navsat/fix 27.11 33.68 28.21 33.63 28.01 33.75 27.67 33.80 n/a 33.70

Scikit Learn have a property – feature_importances –
which, for each feature in the input data, returns a floating
point number corresponding to that feature’s importance in
the algorithm building the classifier. Because we use 10-fold
cross validation in building and validating the model, we have
a set of ten lists of feature importances. Each list contains 19
or 20 features with importance zero, which means they were
not used in the classifier.

We summarize data on the features with a non-zero im-
portance in computing the models for any of the ten folds
in Table IX. StoreCount, WrTmpCount, and ExitCount are
tallies of the number of instructions executed that VALGRIND
categorizes as Ist_Store, Ist_WrTmp, and Ist_Exit,
respectively. InsCount is a tally of the total number of in-
structions executed. SBExit and SBEnter are tallies of how
many times VALGRIND records entry into and exit from a
superblock, which VALGRIND defines to be, ”a single entry,
multiple exit, linear chunk of code.”10 MaxInsAddr is the
highest address of a machine instruction executed. InsAddrDiff
is the difference between the maximum instruction address and
the lowest address of a machine instruction executed.

To compute accuracy, we re-run model creation for the
question we ask in RQ1 using the original data but restricting
the algorithm to only use the same five signals. Results are in
Table X. As one can see by comparing this table, to Table I, the
model built with only the five features is nearly as accurate as
the model built using all 26. This result is not surprising given
that the decision tree algorithm considered these five features
most important when building its models. The result suggests
that, once one determines which features are most useful for a
particular category of program, instrumentation can be limited
to collecting data for those features without significant loss of
accuracy.

10http://valgrind.org/docs/manual/lk-manual.html

TABLE IX
FEATURE IMPORTANCE ACROSS TEN FOLDS

Signal Number of Folds Mean Importance

StoreCount 10 0.4528
WrTmpCount 10 0.2721
InsCount 10 0.2178
SBExit 10 0.0374
ExitCount 10 0.0111
SBEnter 9 0.0093
InsAddrDiff 7 0.0004
MaxInsAddr 3 0.0002

To compute overhead, we create a new custom VALGRIND
tool that only collects the five signals that are identified as
most important. We time the execution of this new tool across
eight mutations and three missions and compare the timing on
these same mutations and missions for our original customized
tool. We find that the tool with the reduced feature set does
not consistently save time over the tool that collects all 26
features. In fact, the reduced feature tool often takes longer
than running the full feature tool. The reduced feature tool
takes longer in 7 cases, is about the same as the original tool in
7 cases, and saves time in the remaining 10 cases. On average
the reduced feature tool took 0.8 seconds longer to run, with it
taking 10 seconds longer in the worst case. This result is also
not surprising given that all of the features had been collected
within the context of an already optimized tool and the same
basic instrumentation was necessary to collect the five features
as the 26.

V. DISCUSSION AND THREATS TO VALIDITY

This section discusses future directions and implications of
the experiments presented here, along with threats to validity.

http://valgrind.org/docs/manual/lk-manual.html


13

TABLE X
ACCURACY METRICS FOR SUPERVISED LEARNING END OF EXECUTION

USING ONLY THE FIVE MOST PREDICTIVE SIGNALS.

Mean Mean Mean Mean Num.
Acc. Prec. Rec. F-Score Samples

0.93 0.99 0.87 0.92 1778

A. Timing

The experiments on timing delays yield interesting possible
future directions.

1) Future Directions: There are several questions that arise
directly from the work presented here.

a) Violations of Other Desired Properties: The work
presented here looks at the extent to which artificial timing
delays deform execution in robotics programs in simulation
by looking at whether the software crashes and physically-
observable properties, such as how far the robot is from the
expected position in physical space and how long the robot
takes to reach waypoints. However, there are other desired
properties in robotics execution. For example, there are safety
properties that robots should maintain during execution, such
as that they should not crash into an obstacle or that they
should not violate speed limits. In addition, robots should
maintain liveness — they should not time out. It would be
interesting to investigate the extent to which timing delays
cause these properties to be violated.

b) Error Handling and Desired Corner Case Behavior:
It would be further interesting to investigate to what extent
timing delays cause robotics systems to enter into error-
handling behavior. For example, many systems are designed
with fail safe behavior, in which the robot is designed to shut
down in a non-damaging state when the system encounters an
unrecoverable error. Error handling for less severe faults may
cause the robot to execute a recovery behavior, such as clearing
its position and using its sensors to attempt to identify where
it is with respect to its environment. Such a recovery behavior
can occur even in nominal execution and is a normal part
of providing resiliency and accounting for nondeterminism in
normal robotics executions. However, timing delays may cause
these behaviors to be more frequent (because the timing delays
may cause errors).

c) Examination of Variation in Nominal Behavior: ARSs
are noisy. There is considerable variation in their nominal
behavior, especially when a perception system, an autopilot
system, and obstacles are involved. This leads to consider-
able variation in paths taken by an unmodified system. The
unmodified system sometimes fails to reach all waypoints
or simply gets stuck. Additional work should examine the
expected amount of variation in unmodified systems and the
causes of that variation.

d) Varied Amounts of Timing Delays: The strategy for
inserting timing delays in these experiments is relatively sim-
ple — a constant delay amount added to every message in the
ROS experiments and a constant delay amount added before
probabilistically selected return statements in the ARDUPILOT
experiments. More targeted delay injections may reveal more

precisely the circumstances under which overhead is absorbed
versus produces observable behavior deviations.

2) Discussion of Timing Amounts:
a) Amount of Timing Delays as Compared to Expected

Event Frequencies: When systems expect events to occur at
a given frequency, such as when there is a control loop, a
timing delay greater than the given frequency will almost
certainly cause unintended behavior. This is reflected in these
experiments, as the timing delays were chosen without regard
to the various control loop and other expected frequencies in
the underlying systems. A portion of the delays are smaller
than the various expected frequencies, while a portion of them
are larger. Smaller delays, when incurred multiple times in the
same program region, can translate into larger delays. There
is, however, redundancy and fault tolerance built into many
ARSs. A delay greater than an expected event frequency may
appear to be absorbed when the redundancy behaviors mask
it.

b) Amount of Timing Delays as Compared to Instrumen-
tation Delays: These timing delays are intended to mimic
delays caused by instrumentation and monitoring. While the
timing delays inserted are not chosen by exact measurement
to make them congruent with monitoring delays, they mimic
those delays in other ways. The timing delays caused by
monitoring are very small and occur very frequently — at
every machine instruction. The timing delays inserted in these
experiments are generally larger, but they occur less frequently.
They are intended as a rough approximation to explain the
principle behind why monitoring delays can be absorbed.
Extensions of these experiments could be used to designate
practical tolerance levels for monitoring and translate those
tolerance levels into actual monitoring tools that work within
those boundaries.

B. Taxonomy of Faults
We classify instances of incorrect software behavior with

reference to earlier taxonomies. While, colloquially, the words,
“bug,” “fault,” “error,” “failure,” and, “off-nominal,” refer to
any software behavior that is unusual and unintended, other
work has broken down the nature of unintended software
behavior into a more precise taxonomy and dealt with the
classification of these types of behaviors [36]–[45]. As in
Avizienis et al., a service failure occurs when when program’s
behavior – or delivered service – differs from the correct [36]
program behavior. Note that with complex robotics and au-
tonomous systems, it is not always easy or, in fact, possible
to determine the the exact constraints of the correct program
behavior [1], [46]. These service failures are observed in their
external manifestations as errors. The underlying cause of an
error is called a fault [36]. In this sense, the experiments
conducted for this paper analyze service failures that occur
in executing software. These failures originate as faults in
the underlying source code. Avizienis et al. further establish
eight fault dimensions based on features such as objective and
persistence. These fault dimensions are useful for classifying
the nature of faults. We do not make claims about whether
our technique is better at identifying faults depending on their
classification.



14

C. Threats to Validity

Supervised machine learning requires that a portion of
the data have labels, so that it can be used for training.
This requires an oracle for at least a portion of the test
inputs, limiting the potential generalizability of the technique.
However, we envision its applicability in a developer-support
setting in contexts where programs are developed over long
periods of time, such that certain regression tests have already
been created with oracle outputs and can be used to support
the creation of new test inputs via automated input generation.
Our approach also generally assumes that unusual program
behavior corresponds to unintended behavior, which may not
always be the case, such as in corner cases or error handling
code. Our technique may work best as part of a suite of
anomaly detection approaches, or including human oversight.

Technically, all versions of each program must be compiled
with the same compiler and compiler flags, within the same
environment. A difference in compilation across versions of
the same program will cause differences in the signals that can
cause the machine learning techniques to pick up on the dif-
ferences in compilation rather than the differences in intended
versus unintended behavior. Similarly, the work assumes that
the varied executions of the programs occur on the same
machines, in what is relatively the same environment. Future
work may allow signal normalization to reduce sensitivity to
different compilation, machines, or environment.

As with any machine learning work, there is always a threat
of overfitting: that the classifiers learn specific traits from the
data that do not correspond to what we intend them to learn.
This threat is amplified by the underlying unbalanced data
set: there are many more executions that do not exhibit errors
than executions that do. We take several steps to mitigate this
threat, including balancing the data sets, and conducting K-
fold cross validation, indicating that our models generalize.
For certain errors, there may be simpler ways to identify
anomalous behavior than by using our models, such as timing
information. However, our technique is more general, in that
it does not rely on bug-class-specific characteristics, and we
demonstrate it on a variety of executions that exhibit errors,
to substantiate generalizability.

There is a risk that our results may not generalize be-
yond the systems studied. The ARDUPILOT system has many
interesting properties for the purposes of our study. It is
a mature open source project and is widely used by both
professional and hobbyist roboticists. However, it operates on
a relatively-simple control loop design; systems with more
complex architectures may have bugs that are less amenable
to being replicated and tested in simulation and detected using
these techniques. Addressing this risk motivates future work
isolating portions of systems for observation.

Along the same lines, these experiments are limited to the
input data provided, which includes relatively simple simulated
environments and missions. More complex behaviors may not
have been tested. Furthermore, the timing delay experiments
did not test effects other than deviations in the observed three-
dimensional position of the robot. It is possible that delays can
affect other properties. However, this threat is mitigated by the

idea that any major failures in robot execution are likely to
affect three-dimensional position.

We conduct all experiments in simulation. While it is pos-
sible to gain many insights about robotics in simulation [12],
[13], simulation may not accurately reflect some aspects of
real hardware, such as the influence of overhead on timing.
For example, real robotics hardware often has distributed
computing resources which may not be accurately reflected
in the centralized computing power available in simulation.
A component with less computing power may encounter
bottlenecks that are not seen in simulation. Simulation also
has imperfect fidelity to real world situations [47]. However,
this threat is mitigated by the fact that much of the monitoring
and bug detection can also take place in simulation.

VI. RELATED WORK

a) Dynamic analysis: Several other dynamic analysis
techniques do not require source code. Eisenberg et al. [48]
introduce using dynamic analysis to trace program functional-
ity to its location in binary or source code. However, as with
many dynamic analysis tools, the implementation is limited to
Java. Clearview extends invariant inference and violation work
to Windows x86 binaries, without the need for source code or
debugging information [23]. Clearview focuses on particular
types of attacks, and is primarily designed to repair errors.
We do not repair errors, but our technique is generic to a
variety of bug or error types. The techniques are therefore
best viewed as complementary to one another. Observation-
based testing techniques [49] use instrumentation to support
dynamic analysis on existing sets of program inputs [50].

Dynamic invariant detection techniques automatically iden-
tify properties that hold true over all correct executions of
a program, and identify bugs via violation of those in-
variants. Well-known techniques include DAIKON [19] and
DIDUCE [21]. Such techniques typically require source code,
can struggle to scale, or have other limitations which reduces
their usefulness in complex autonomous systems. Statistical
fault identification techniques use predicates and statistical
methods to localize faults on a source level [24]–[27].

General-purpose frameworks for writing and using in-
strumentation tools for dynamic binary analysis include
VALGRIND and PIN. Our technique is implemented in
VALGRIND but could generalize to other frameworks given
appropriate engineering effort. Dynamic binary instrumenta-
tion does its work at runtime, allowing it to encompass any
code called by the subject program, whether it be within the
original program, in a library, or elsewhere [9], [10], [32].
However, these techniques often impose prohibitive runtime
overhead; a key contribution of our approach is a set of
engineering mechanisms for enabling their use in real-time
robotics systems.

b) Intrusion Detection: Our approach shares conceptual
similarities with techniques for intrusion detection, especially
host-based intrusion detection [16], [17]. Intrusion detection
models typically monitor application interaction with the op-
erating system, particularly in system calls, seeking abnormal
patterns. Advances on these approaches have included formal-
izing the system models, reducing overhead, and incorporating



15

timing as a factor in patterns [51]. To this end, companies have
begun applying machine learning and artificial intelligence
techniques in their threat-detection approaches [18], as we do
in robotics systems.

c) Testing Autonomous Vehicles and Robotics: Testing
autonomous vehicles and robotics systems presents problems
unique to those domains; and significant challenges exist in
ensuring the safety of autonomous vehicles in an end-to-end
fashion [3]. Beschastnikh et al. outline the challenges and
drawbacks to existing approaches to debugging distributed sys-
tems, such as robotics and autonomous vehicles [52]. Several
approaches have addressed aspects of the problems in testing
these systems. Sotiropoulos et al. motivate testing robotics
in simulation and demonstrate the approach’s effectiveness
in some domains [12]. Tuncali et al. define a robustness
function for determining how far a system is from violating
its parameters [53]. Notably, however, this approach relies on
well-defined system requirements, which are absent in many
systems. Timperley et al. categorize real bugs reported in the
ArduPilot autonomous vehicle software as to whether they can
be reproduced and/or detected in simulation [13]. Theissler
uses anomaly detection on automotive data [54], focusing on
faults in analog vehicle signals rather than program execution,
as we do. Hutchison et al. outline a framework for robustness
testing of robotics and autonomous systems, highlighting the
differences from traditional software [2]. These unique chal-
lenges, and the lack of a single solution for safety, motivate our
proposed technique for detecting errors in robotics systems.

A considerable body of work supports formal verification
of cyber-physical systems to avoid faults. However, as Zheng
et al. point out in their survey of literature and interviews with
practitioners on verification and validation for cyber-physical
systems, there are many gaps between the verification work
and practical application to entire real systems [28], [29].
Regardless, these techniques are orthogonal to the empirical,
dynamic techniques we present in this paper.

d) The Oracle Problem: One way to view our learned
models are as oracles of intended program behavior. The ora-
cle problem [55]—determining whether a program is behaving
as intended—is a longstanding problem in software testing
and a significant barrier to automated testing. Kanewala and
Bieman [56] survey existing program testing techniques that
attempt to substitute for an oracle. They highlight several
approaches in the domain of computer graphics that make
use of machine learning [57], [58]. While one might expect
these approaches to be similar to those proposed in this work,
this category of techniques focuses on using machine learning
to validate program output, rather than ensuring its correct
operation at all times. The distinction is key when applied to
situations where properties such as safety must be maintained
at all times.

VII. CONCLUSIONS

In this work, we have demonstrated the capability of dy-
namic binary instrumentation, when combined with machine
learning, to detect executions that display behavioral errors.
This holds in the relatively noisy context of robotics software

in simulation, an increasingly critical domain. As software
without closely-defined expected behavior becomes more com-
mon, techniques such as these, that can draw conclusions
about whether software is working without needing to know
exactly what it is intended to do, increase in applicability.
Our technique also has the benefit of not being bound by
particular language constraints. It does not require access to
source code, which is often unavailable in deployed contexts.
Furthermore, the technique requires no semantic understanding
of a program’s function to generate a model of the program’s
behavior.

Additional work remains in extending this approach to
demonstrate its broad applicability, especially to real, deployed
scenarios. The approach holds particular promise for detecting
errors early, well before they manifest in obvious crashes.
More engineering work is required to construct tools that are
practical to detect errors early, as well as a more generic
approach that scales to larger systems.

Expanding the types of data collected and simplifying
deployment of techniques like these in systems in-the-field
motivates data sampling to reduce overhead. This may be
supported by a detailed investigation of the trade offs between
sampling frequency and predictive power, and also the number
of additional signals that can be collected without increasing
overhead via sampling. Additionally collecting more signals
affords an opportunity to analyze which signals have the most
predictive power and whether those signals are different for
robotics software as opposed to other types of software.

We have demonstrated the utility of supervised machine
learning models for predicting defective behavior based on
low-level signals.

We have further demonstrated that timing delays can be
absorbed into simulated robotics systems in varying amounts.
These experiments support the observations that overhead
caused by dynamic binary instrumentation does not cause
as much runtime extension as one might expect based on
overhead in traditional systems. In addition, because of in-
herent nondeterminism in the underlying SUTs, the changes
in behavior caused by delays are often within expected ranges
of behavior under nominal circumstances. If instrumentation
can be calibrated to avoid interfering with critical points in
the software, it is a suitable tool for analyzing ARSs.

A next step would be to extend the work to make use of
unsupervised learning and novelty-detection algorithms. These
approaches would reduce the need for an oracle for the training
data or the manual annotation burden. Such work would
involve a deeper investigation of the mathematical properties
of the data and methods that would be likely to distinguish
them.

In sum, our techniques based in dynamic binary instrumen-
tation and machine learning have broad potential applications.
They have the advantages of being language-independent,
not requiring source code, and requiring no semantic under-
standing of program behavior. They are effective for finding
executions of real-world robotics software that exhibit errors,
an important challenge in our increasingly-automated world.



16

ACKNOWLEDGMENT

This research was partially funded by AFRL (#OSR-4066,
#FA8750-16-2-0042) and DARPA (#FA8750-16-2-0042). The
authors are grateful for their support. Any opinions, findings,
or recommendations expressed are those of the authors and do
not necessarily reflect those of the US Government.

REFERENCES

[1] L. Fraade-Blanar, M. S. Blumenthal, J. M. Anderson, and N. Kalra,
“Measuring automated vehicle safety: Forging a framework,” RAND
Corporation, Tech. Rep., 2018. [Online]. Available: https://www.rand.
org/pubs/research reports/RR2662.html

[2] C. Hutchison, M. Zizyte, P. E. Lanigan, D. Guttendorf, M. Wagner,
C. Le Goues, and P. Koopman, “Robustness testing of autonomy soft-
ware,” in International Conference on Software Engineering - Software
Engineering in Practice, ser. ICSE-SEIP ’18, 2018, pp. 276–285.

[3] P. Koopman and M. Wagner, “Autonomous vehicle safety: An interdis-
ciplinary challenge,” IEEE Intelligent Transportation Systems Magazine,
vol. 9, no. 1, pp. 90–96, 2017.

[4] S. Forrest and W. Weimer, “The challenges of sensing and repairing
software defects in autonomous systems,” Regents of the University of
New Mexico, Tech. Rep., 2014.

[5] E. Schulte, J. DiLorenzo, W. Weimer, and S. Forrest, “Automated repair
of binary and assembly programs for cooperating embedded devices,”
in Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’13, 2013, pp. 317–328.

[6] M. U. Sanwal and O. Hasan, “Formal verification of cyber-physical
systems: Coping with continuous elements,” in Computational Science
and Its Applications, ser. ICCSA ’13, 2013, pp. 358–371.

[7] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige, “Tainttrace: Efficient flow
tracing with dynamic binary rewriting,” in Computers and Communica-
tions, ser. ISCC ’06, 2006, pp. 749–754.

[8] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as
deviant behavior: A general approach to inferring errors in systems
code,” in Symposium on Operating Systems Principles, ser. SOSP ’01,
2001, pp. 57–72.

[9] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” in Programming Language Design and
Implementation, ser. PLDI ’07, 2007, pp. 89–100.

[10] N. Nethercote, “Dynamic binary analysis and instrumentation,”
University of Cambridge, Computer Laboratory, Tech. Rep. UCAM-
CL-TR-606, 2004. [Online]. Available: https://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-606.pdf

[11] D. S. Katz, C. Hutchison, M. Zizyte, and C. Le Goues, “Detecting
execution anomalies as an oracle for autonomy software robustness,” in
International Conference on Robotics and Automation, ser. ICRA ’20,
2020, pp. 9367–9373.

[12] T. Sotiropoulos, H. Waeselynck, and J. Guiochet, “Can robot navigation
bugs be found in simulation? an exploratory study,” in Software Quality,
Reliability and Security, ser. QRS ’17, 2017, pp. 150–159.

[13] C. S. Timperley, A. Afzal, D. S. Katz, J. M. Hernandez, and C. Le Goues,
“Crashing simulated planes is cheap: Can simulation detect robotics bugs
early?” in International Conference on Software Testing, Validation, and
Verification, ser. ICST ’18, 2018, pp. 331–342.

[14] L. Williamson, “Presented as IBM Rational software analyzer: Beyond
source code,” in Rational Software Developer Conference, ser. RSDC
’08, 2008.

[15] N. P. Kropp, P. J. Koopman, and D. P. Siewiorek, “Automated robustness
testing of off-the-shelf software components,” in Fault-Tolerant Comput-
ing, ser. FTCS ’98, June 1998, pp. 230–239.

[16] D. E. Denning, “An intrusion-detection model,” IEEE Transactions on
Software Engineering, vol. 13, no. 2, pp. 222–232, 1987.

[17] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion
detection systems,” in Conference on Computer and Communications
Security, ser. CCS ’02, 2002, pp. 255–264.

[18] C. Inc., “Cylance(R) prevention-first security with
CylancePROTECT(R) and CylanceOPTICS(TM).” [Online]. Available:
https://s7d2.scene7.com/is/content/cylance/prod/cylance-web/en-us/
resources/knowledge-center/resource-library/briefs/CylanceOPTICS
Solution Brief.pdf

[19] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,”
IEEE Transactions on Software Engineering, vol. 27, no. 2, pp. 99–123,
2001.

[20] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The Daikon system for dynamic detection of
likely invariants,” Science of Computer Programming, vol. 69, pp. 35–
45, 2007.

[21] S. Hangal and M. S. Lam, “Tracking down software bugs using
automatic anomaly detection,” in International Conference on Software
Engineering, ser. ICSE ’02, 2002, pp. 291–301.

[22] S. Hangal, N. Chandra, S. Narayanan, and S. Chakravorty, “IODINE:
A tool to automatically infer dynamic invariants for hardware designs,”
in Design Automation Conference, ser. DAC ’05, 2005, pp. 775–778.

[23] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, and G. Sullivan,
“Automatically patching errors in deployed software,” in Symposium on
Operating Systems Principles, ser. SOSP ’09, 2009, pp. 87–102.

[24] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken, “Statistical
debugging: Simultaneous identification of multiple bugs,” in Interna-
tional Conference on Machine Learning, ser. ICML ’06, 2006, pp. 1105–
1112.

[25] A. X. Zheng, M. I. Jordan, B. Liblit, and A. Aiken, “Statistical
debugging of sampled programs,” in Neural Information Processing
Systems, ser. NIPS ’04, 2004, pp. 603–610.

[26] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scal-
able statistical bug isolation,” in Programming Language Design and
Implementation, ser. PLDI ’05, 2005, pp. 15–26.

[27] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation
via remote program sampling,” in Programming Language Design and
Implementation, ser. PLDI ’03, 2003, pp. 141–154.

[28] X. Zheng and C. Julien, “Verification and validation in cyber physical
systems: Research challenges and a way forward,” in Software Engi-
neering for Smart Cyber-Physical Systems, 2015, pp. 15–18.

[29] X. Zheng, C. Julien, M. Kim, and S. Khurshid, “Perceptions on the state
of the art in verification and validation in cyber-physical systems,” IEEE
Systems Journal, vol. 11, no. 4, pp. 2614–2627, Dec 2017.

[30] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “sel4: Formal verification of an operating-
system kernel,” Communications of the ACM, vol. 53, no. 6, pp. 107–
115, Jun 2010.

[31] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolan-
ski, and G. Heiser, “Comprehensive formal verification of an os micro-
kernel,” ACM Transactions on Computer Systems, vol. 32, no. 1, pp.
2:1–2:70, Feb 2014.

[32] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Programming
Language Design and Implementation, ser. PLDI ’05, 2005, pp. 190–
200.

[33] C. S. Timperley, S. Stepney, and C. Le Goues, “An investigation into
the use of mutation analysis for automated program repair,” in Search
Based Software Engineering, ser. SSBSE ’17, 2017, pp. 99–114.

[34] Y. Chen, C. M. Poskitt, and J. Sun, “Learning from mutants: Using code
mutation to learn and monitor invariants of a cyber-physical system,” in
Symposium on Security and Privacy, ser. SP ’18, 2018, pp. 648–660.

[35] C. S. Timperley, S. Stepney, and C. Le Goues, “Poster: Bugzoo: A
platform for studying software bugs,” in International Conference on
Software Engineering: Companion Proceedings, ser. ICSE Poster ’18,
2018, pp. 446–447.

[36] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan
2004.

[37] D. Cotroneo, M. Grottke, R. Natella, R. Pietrantuono, and K. S.
Trivedi, “Fault triggers in open-source software: An experience report,”
in International Symposium on Software Reliability Engineering, ser.
ISSRE ’13, 2013, pp. 178–187.

[38] S. K. Sahoo, J. Criswell, and V. Adve, “An empirical study of reported
bugs in server software with implications for automated bug diagnosis,”
in International Conference on Software Engineering, ser. ICSE ’10,
2010, pp. 485–494.

[39] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai, “Have things
changed now?: An empirical study of bug characteristics in modern open
source software,” in Architectural and System Support for Improving
Software Dependability, ser. ASID ’06, 2006, pp. 25–33.

[40] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics,”
in Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’08, 2008, pp. 329–339.

https://www.rand.org/pubs/research_reports/RR2662.html
https://www.rand.org/pubs/research_reports/RR2662.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-606.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-606.pdf
https://s7d2.scene7.com/is/content/cylance/prod/cylance-web/en-us/resources/knowledge-center/resource-library/briefs/CylanceOPTICS_Solution_Brief.pdf
https://s7d2.scene7.com/is/content/cylance/prod/cylance-web/en-us/resources/knowledge-center/resource-library/briefs/CylanceOPTICS_Solution_Brief.pdf
https://s7d2.scene7.com/is/content/cylance/prod/cylance-web/en-us/resources/knowledge-center/resource-library/briefs/CylanceOPTICS_Solution_Brief.pdf


17

[41] K. Henningsson and C. Wohlin, “Assuring fault classification agreement
- an empirical evaluation,” in International Symposium on Empirical
Software Engineering, ser. ISESE ’04, 2004, pp. 95–104.

[42] S. A. Asadollah, H. Hansson, D. Sundmark, and S. Eldh, “Towards
classification of concurrency bugs based on observable properties,” in
Complex Faults and Failures in Large Software Systems, ser. COUF-
LESS ’15, 2015, pp. 41–47.

[43] K. El Emam and I. Wieczorek, “The repeatability of code defect
classifications,” in International Symposium on Software Reliability
Engineering, ser. ISSRE ’98, 1998, pp. 322–333.

[44] M. Grottke, A. P. Nikora, and K. S. Trivedi, “An empirical investigation
of fault types in space mission system software,” in Dependable Systems
Networks, ser. DSN ’10, 2010, pp. 447–456.

[45] G. Steinbauer, “A survey about faults of robots used in robocup,” in
RoboCup 2012: Robot Soccer World Cup XVI, X. Chen, P. Stone, L. E.
Sucar, and T. van der Zant, Eds., Berlin, Heidelberg, 2013, pp. 344–355.

[46] P. Koopman and M. Wagner, “Toward a framework for highly
automated vehicle safety validation,” in WCX World Congress
Experience, ser. WCX ’18. SAE International, 2018. [Online].
Available: https://doi.org/10.4271/2018-01-1071

[47] A. Afzal, D. S. Katz, C. Le Goues, and C. S. Timperley, “A study on
the challenges of using robotics simulators for testing,” arXiv preprint
arXiv:2004.07368, 2020.

[48] A. D. Eisenberg and K. De Volder, “Dynamic feature traces: Finding
features in unfamiliar code,” in International Conference on Software
Maintenance, ser. ICSM ’05, 2005, pp. 337–346.

[49] W. Dickinson, D. Leon, and A. Podgurski, “Pursuing failure: The
distribution of program failures in a profile space,” in Joint Meeting
of the European Software Engineering Conference and the Symposium
on The Foundations of Software Engineering, ser. ESEC/FSE ’01, 2001,
pp. 246–255.

[50] D. Leon, A. Podgurski, and L. J. White, “Multivariate visualization
in observation-based testing,” in International Conference on Software
Engineering, ser. ICSE ’00, 2000, pp. 116–125.

[51] S. Lu and R. Lysecky, “Analysis of control flow events for timing-
based runtime anomaly detection,” in Workshop on Embedded Systems
Security, ser. WESS ’15, 2015, pp. 3:1–3:8.

[52] I. Beschastnikh, P. Wang, Y. Brun, and M. D. Ernst, “Debugging
distributed systems,” Queue, vol. 14, no. 2, pp. 91–110, 2016.

[53] C. E. Tuncali, T. P. Pavlic, and G. Fainekos, “Utilizing S-TaLiRo as
an automatic test generation framework for autonomous vehicles,” in
Intelligent Transportation Systems, ser. ITSC ’16, 2016, pp. 1470–1475.

[54] A. Theissler, “Detecting known and unknown faults in automotive
systems using ensemble-based anomaly detection,” Knowledge-Based
Systems, vol. 123, pp. 163–173, 2017.

[55] E. T. Barr, M. Harman, P. Mcminn, M. Shahbaz, and S. Yoo, “The oracle
problem in software testing : A survey,” IEEE Transactions on Software
Engineering, vol. 41, no. 5, pp. 507–525, 2015.

[56] U. Kanewala and J. M. Bieman, “Techniques for testing scientific
programs without an oracle,” in Software Engineering for Computational
Science and Engineering, ser. SE-CSE ’13, 2013, pp. 48–57.

[57] K. Frounchi, L. C. Briand, L. Grady, Y. Labiche, and R. Subramanyan,
“Automating image segmentation verification and validation by learning
test oracles,” Information and Software Technology, vol. 53, no. 12, pp.
1337–1348, 2011.

[58] W. Chan, S. Cheung, J. C. Ho, and T. Tse, “PAT: A pattern classification
approach to automatic reference oracles for the testing of mesh simpli-
fication programs,” Journal of Systems and Software, vol. 82, no. 3, pp.
422–434, 2009.

PLACE
PHOTO
HERE

D eborah S. Katz recieved the BA degree in
Computer Science from Amherst College, Amherst,
Massachusetts, the JD degree from the New York
University School of Law, New York, New York,
and the MS and PhD degrees from the Computer
Science Department at Carnegie Mellon University,
Pittsburgh, Pennsylvania. Dr. Katz is interested in
techniques for enhancing software quality for au-
tonomous and robotics systems. She currently works
in research and development at Seegrid. Dr. Katz
completed the work presented here while affiliated

with Carnegie Mellon University.

PLACE
PHOTO
HERE

C hristopher S. Timperley received the MEng and
PhD degrees in Computer Science from the Univer-
sity of York, England. He is a systems scientist at
the Institute for Software Research within the School
of Computer Science at Carnegie Mellon University.
Dr. Timperley is interested in developing methods
for building, enhancing, and assuring software for
autonomous and robotics systems. For more infor-
mation, please visit http://www.christimperley.co.uk.

PLACE
PHOTO
HERE

C laire Le Goues received the BA degree in Com-
puter Science from Harvard University, Cambridge,
Massachusetts, and the MS and PhD degrees from
the University of Virginia, Charlottesville, Virginia.
She is an associate professor with the School
of Computer Science, Carnegie Mellon University,
where she is primarily affiliated with the Institute
for Software Research. She has been recognized by
an NSF CAREER Award, the ICSE 2019 Most In-
fluential Paper Award, and the 2020 ACM SIGSOFT
Early Career Researcher Award. Dr. Le Goues is

interested in constructing high-quality systems in the face of continuous
software evolution, with a particular interest in automatic error repair. For
more information, please visit http://www.cs.cmu.edu/∼clegoues.

https://doi.org/10.4271/2018-01-1071
http://www.christimperley.co.uk
http://www.cs.cmu.edu/~clegoues

	I Introduction
	II Background and Motivation
	II-A The Subject Systems
	II-B Motivating Example
	II-C Dynamic Binary Instrumentation

	III Approach
	III-A Collecting Signals with Dynamic Binary Instrumentation
	III-B Minimizing Overhead in Dynamic Binary Instrumentation
	III-C Corpus Generation
	III-D Supervised Learning
	III-E Approach and Methodology for Timing Experiments
	III-E1 Subject Systems
	III-E2 Method of Inserting Delays


	IV Evaluation
	IV-A RQ1: Error Detection
	IV-A1 Using a Prior Release to Detect Errors on a Subsequent Release

	IV-B RQ2: Amount of Training Data and Accuracy
	IV-C RQ3: Finding Errors Before the End of Execution
	IV-D RQ4: Overhead
	IV-E RQ5: Effects of Delays on Robot Behavior
	IV-E1 Effects on Observable Behavior
	IV-E2 When Delays Cause Software Crashes

	IV-F RQ6: Feature Importance and Overhead

	V Discussion and Threats to Validity
	V-A Timing
	V-A1 Future Directions
	V-A2 Discussion of Timing Amounts

	V-B Taxonomy of Faults
	V-C Threats to Validity

	VI Related Work
	VII Conclusions
	References
	Biographies
	D
	C
	C


