
Reflective Grammatical Evolution

Christopher Timperley Susan Stepney

York Centre for Complex Systems Analysis, University of York, UK, YO10 5DD
ct584@york.ac.uk susan.stepney@york.ac.uk www.yccsa.org

Abstract

Our long term goal is to develop an open-ended reflective
software architecture to support open-ended evolution. Here
we describe a preliminary experiment using reflection to
make simple programs evolved via Grammatical Evolution
robust to mutations that result in coding errors.

We use reflection in the domain of grammatical evolu-
tion (GE) to achieve a novel means of robustness by au-
tonomously repairing damaged programs, improving conti-
nuity in the search and allowing programs to be evolved effec-
tively using soft grammars. In most implementations of GE,
individuals whose programs encounter errors are assigned the
worst possible fitness; using the techniques described here,
these individuals may be allowed to continue evolving.

We describe two different approaches to achieving robustness
through reflection, and evaluate their effectiveness through
a series of experiments carried out on benchmark regression
problems. Results demonstrate a statistically significant im-
provement on the fitness of the best individual found during
evolution

Keywords: reflection, open-ended evolution, grammatical
evolution, robustness

Introduction
Our long term goal is to develop an open-ended reflective
software architecture to support open-ended evolution in sil-
ico, as outlined in Stepney and Hoverd (2011). As a first
step, we are making evolutionary systems more robust to
evolved programs that contain errors. Here we describe
an experiment using reflection to make simple programs
evolved via Grammatical Evolution robust to mutations that
result in coding errors.

Grammatical evolution (GE) is a metaheuristic search
method belonging to the family of evolutionary algorithms.
The evolutionary algorithm finds solutions to problems by
evolving a population of individuals, each representing a po-
tential solution to the given problem. In GE the individual
genomes are typically represented as integer lists, decoded
through a provided grammar into syntactically correct com-
puter program phenotypes. Evolution operators may nev-
ertheless produce semantically faulty programs. If these

faulty programs are removed from the population, any im-
plicit heuristic information they may have gained will be
lost to future generations. The alternative, examining the
program phenotype to fix errors, is both complicated and
grammar-dependent.

We instead use reflection, the ability of a program to in-
spect and modify its own code at run-time, to autonomously
correct or heal the errors or defects that occur during the evo-
lutionary process, in a grammar-independent manner. By
being able to tolerate defects, a layer of robustness is in-
corporated into the search, allowing a wider range of muta-
tions to be performed with less risk of losing good individ-
uals from the population. This also allows less restrictive
softer grammars to be used, which may improve locality in
the search; traditionally such grammars would produce too
many errors to be used effectively.

We demonstrate that reflection offers a viable mecha-
nism for automatically correcting the dynamic population
of individuals in GE. Using reflection, rather than a compli-
cated grammar-dependent analysis of an individual’s geno-
type and phenotype, allows the evolutionary process to re-
main unaware of the errors within its individuals’ pheno-
types and independent of how those errors are corrected.
We achieve this isolation through a decentralised robustness
layer that logically rests on top of the virtual machine of the
programming language and below the layer of its programs.

The structure of the rest of this paper is as follows. We
provide relevant contextual material on GE and reflection.
We next describe two robustness layer designs, a global and
a local one, to provide a robustness layer in Ruby programs.
We then describe some evolutionary experiments, compar-
ing these apporaches with a control case of no robustness
layer, where faulty phenotypes are discarded.

Background
Grammatical Evolution
Grammatical Evolution (Ryan et al., 1998) is an evolution-
ary computation technique, implemented as a variant of the
Genetic Algorithm (GA). The genotype typically takes the
form of a list of integers, and the phenotype is produced by

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/alife2014/26/71/1901889/978-0-262-32621-6-ch013.pdf by guest on 16 April 2023

blriley
Typewritten Text
DOI: http://dx.doi.org/10.7551/978-0-262-32621-6-ch013

mapping the genotype to a derivation of a given grammar.
Typically this grammar is used to model the grammar of a
given programming language and the resulting derivations
form syntactically valid programs in that language.

Unlike Genetic Programming (GP), another EA variant
that directly represents and operates on individuals as com-
puter programs (typically using a tree-like structure), GE’s
genotype separates the program structure from the evolu-
tionary process. This allows programs to be evolved us-
ing arbitrary forms and languages, beyond LISP-style tree
structures, and allows the GE representation to be used
with non-evolutionary meta-heuristics to produce programs
(Dempsey et al., 2009), such as particle swarm optimisation
(O’Neill and Brabazon, 2006).

Mapping Process Individuals are mapped to their pheno-
type through the use of a Backus-Naur Form grammar. The
values v from the list of integers are sequentially read off
from left-to-right and used to select the next production rule
to use from the grammar; at each step, the rule at index i
is selected, where i = v mod m, and m is the number of
production rules available.

This process of derivation continues until one of the fol-
lowing situations occur:

• The mapping is completed, and all non-terminals have
been transformed into terminals, producing a complete
phenotype.

• The list of integers has been exhausted, but the mapping is
incomplete. Usually in this case, the list is wrapped and
its alleles are reused, allowing the derivation process to
continue (Dempsey et al., 2009); however, this reduces lo-
cality within the chromosome, since codons may possess
different meanings. An alternative is to cease the mapping
process, but this produces a large number of incomplete
and invalid derivations. Another alternative is to sample
new codon values when they are required and to append
these values to the end of the genome.

• A critical number of codons have been consumed. The
derivation process is halted and the individual is assigned
the worst possible fitness value; this mechanism prevents
extremely long derivations from occurring.

Grammars Traditionally, GE uses heavily restricted, or
hard, grammars designed to ensure syntactically and, as far
as possible, semantically valid programs are always pro-
duced. Often these grammars are tailored to the domain of
the specific problem being solved.

The performance of GE is highly sensitive to the choice
of grammar down to its finest details (O’Neill et al., 2001).
This problem, combined with the large domain of possible
grammars, leads practitioners to use ad-hoc measures to de-
sign their grammar, if such considerations are given at all.
Whilst hard grammars restrict the domain of the search, and

hence reduce the scale of the problem, their inflexibility can
leave them trapped in a local optima and unable to escape.

We propose instead the use of soft grammars, that allow
smaller changes to be made to the overall program. These
grammars result in a larger number of semantically incor-
rect programs, however, so we combine this approach with
a self-repair mechanism. This broadens the genetic land-
scape and introduce flexibility into the phenotype. By incor-
porating such flexibility into the phenotype, neutral genetic
drift is made possible; small changes to genotype may occur
without dramatic consequence to the fitness of the individ-
ual. This transformation of the genetic landscape may allow
the search to avoid the local optima of hard grammars, and
may ultimately improve the performance of the algorithm.

Autonomic Computing
Self-healing is a form of autonomic computing, a term in-
troduced by IBM in 2001 (Kephart and Chess, 2003), and
used to describe computer systems capable of inspecting
and modifying their behaviour in response to changing re-
quirements. Inspiration for these systems came from the au-
tonomic nervous system of the human body; an incredibly
complex system composed of many interconnected compo-
nents that seamlessly manage themselves to hide their com-
plexity from us.

Kephart and Chess (2003) give four functional features
that an autonomic computing system should possess:

1. Self-optimisation: The ability to profile the usage and
control the allocation of resources, to provide optimal ser-
vice quality. Self-optimisation could also include rewrit-
ing software functions to reduce resource usage.

2. Self-configuration: The ability to automatically config-
ure components according to the context and environment
of the system.

3. Self-healing: The ability to automatically diagnose and
correct faults.

4. Self-protection: The ability to recognise and protect it-
self from malicious attacks.

Whilst the grand vision of autonomic computing is yet
to come to fruition, its individual features are beginning to
be realised. Much of this effort has been directed towards
the self-healing aspect of autonomic computing, in the field
of resilient software, which seeks to address the inherent
fragility suffered by all computer systems, by developing
simple and lightweight alternatives to the difficult robustness
and fault tolerance techniques employed in safety-critical
system, which often involve additional hardware.

Adaptive Software Systems Haydarlou et al. (2005) pro-
poses the use of adaptive software systems, which modify
their own behaviour in response to errors and environmental

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/alife2014/26/71/1901889/978-0-262-32621-6-ch013.pdf by guest on 16 April 2023

changes with the help of an adaptive plan describing what
modifications should be made. Where such systems have
been used, they have typically employed a fixed adaptive
plan, pre-designed by a human programmer. An alternative,
outlined in Haydarlou et al. (2005), involves using genetic
programming to evolve an adaptive plan to allow the system
to autonomously adapt itself to new situations.

Fraglets Tschudin (2003) describes a radically different
approach to creating a robust environment for hosting re-
silient software, capable of addressing the problems of soft
faults and program adaptability from a pure software per-
spective, without the need for hardware fault tolerance mea-
sures. This is achieved by using a novel software execution
model inspired by the interaction of chemical molecules,
which places the ability to self-modify at the core of its de-
sign.

This model is composed of small computational atoms
called Fraglets, which when combined through reactions,
process both code and data. Each time program code is re-
quired, a new instance is dynamically loaded and executed
rather than being stored in the memory of the computer. This
allows the code to be easily manipulated by the program
without the problems of accessing live code in the memory.
Lost and failed Fraglet executions are handled by creating
and executing a new instance of the affected Fraglet.

Metaprogramming and Reflection
Metaprogramming is the technique of writing computer pro-
grams which manipulate or write the code of other programs
(Perrotta, 2010). These meta-programs are written using a
metalanguage, which facilities the writing and manipulation
of programs written in the target object language (Stump,
2009).

Reflection is the ability of an object language to act as its
own metalanguage (Smith, 1982; Maes, 1987; Stump, 2009;
Ferber, 1989). Reflective systems may exploit the ability
of reflection to inspect and manipulate the functionality and
implementation of the system itself. In some programming
languages, such as Lisp and Ruby, this reflective system may
be the programming language itself, allowing many aspects
of the implementation and semantics of the language to be
inspected, extended and redefined at run-time.

Design
Here we describe two designs for implementing a robustness
layer through reflection: a centralised or “global” approach,
and a “local” approach. We have implement both, and com-
pared them through evolutionary experiments.

Following an analysis of several popular reflective pro-
gramming languages, we have concluded that Ruby offers
the richest suite of reflective capabilities and a natural tilt
towards meta-programming, making it an ideal language to
explore the robustness layer approach.

ARITHMETIC FUNCTIONS

〈op〉 ::= ‘add’ | ‘sub’ | ‘mul’ | ‘div’

SOFT GRAMMAR

〈program〉 ::= 〈block〉
〈block〉 ::= 〈fcall〉 | 〈float〉 | 〈var〉
〈fcall〉 ::= 〈string〉 ‘(’ 〈fargs〉 ‘)’

〈fargs〉 ::= 〈block〉 ‘,’ 〈fargs〉 | 〈block〉
〈string〉 ::= 〈char〉〈string〉 | 〈char〉 | 〈char〉
〈float〉 ::= 〈nz digit〉〈integer〉 ‘.’ 〈integer〉
| 〈digit〉 ‘.’ 〈integer〉
〈integer〉 ::= 〈digit〉〈integer〉 | 〈digit〉
〈char〉 ::= ‘a’..‘z’

〈digit〉 ::= ‘0’..‘9’

〈nz digit〉 ::= ‘1’..‘9’

〈var〉 ::= ‘x’ | ‘y’

Figure 1: Soft grammar used throughout paper.

sdd(afg(mua(x, mua(x, x, y)), juli(x, x)), x)→
add(add(mul(x, mul(x, x)), mul(x, x)), x)→
x3 + x2 + x

Figure 2: An example of an evolved program, its effective
form when using robustness measures, and its equivalent
symbolic expression.

Here we investigate the use of these robustness measures
with Ruby programs created via GE using a soft grammar
(Figure 1). The only methods actually supported are the
arithmetic functions (Figure 1), which take two arguments.
The soft grammar can produce programs with method names
that are arbitrary character strings, taking different numbers
of arguments. (The long-term aim is to allow methods to
mutate gradually into different methods; this is a first study.)
To support this grammar, the robustness measures handle
missing method errors, by mapping to an existing method,
and incorrect argument errors, by truncating or padding the
argument list. An example of a program evolved using the
soft grammar is given in Figure 2.

Global Approach
The global approach achieves robustness by autonomously
intercepting all exceptions thrown by monitored methods
and applying fixes aimed at removing the root cause of the
problem, calculated using details of the fault. This process
can be seen as a form of self-healing, where the robustness
layer diagnoses problems based on their details and auto-
matically heals those problems by modifying the damaged

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/alife2014/26/71/1901889/978-0-262-32621-6-ch013.pdf by guest on 16 April 2023

Figure 3: An overview of the global robustness layer design.

source code.
All calls to a protected method are routed through the

global robustness layer, which attempts to execute the
method according to its normal semantics.

• In the event of a fatal exception, the robustness layer be-
comes active and diagnoses the fault before calculating a
suitable candidate fix to the issue.

• After the fix has been applied, the kernel attempts to call
the modified method once again. In the event a subse-
quent error occurs, the process of diagnosis and repair is
repeated, until either the method no longer produces er-
rors during its execution, or till a maximum number of
successive repairs has been reached.

Modifications made to the affected method during its
“protected execution” may then be saved by the original
method, removing the need to repair the method for suc-
cessive calls. This ability proves useful for problems where
the candidate solution is executed a number of times during
evaluation, such as in regression problems.

Architecture
This layer is composed of three components which interact
to examine the behaviour of protected method calls and to
apply corrective measures in the event of their failure to pre-
vent the program from crashing. These three components
are:

Detection: Detects the occurrence of a specific type of fatal
error within the affected method.

Diagnosis: Uses details of the error to determine its root
cause within the source code of the affected method.

Repair: Uses the error diagnosis to apply corrective modi-
fications to the source code of the affected method.

Instructions on how to detect, diagnose and repair specific
types of errors are supplied to these components in the form
of error strategies.

Figure 4: Architecture of the global robustness layer.

Immediately after an exception is thrown by a protected
method, its details are passed to each of these error strate-
gies, which try to detect if a certain type of error has oc-
curred, the region of the source code responsible for produc-
ing the error, and how that code can be modified to remove
the cause of the error.

After passing details of the error and method call to each
error strategy, a set of candidate fixes are produced which are
exhaustively tried until either the original error is no longer
present, or there are no fixes left, in which case the original
exception is thrown again, or a threshold number of tries is
reached (10 in the work reported here).

Global Error Handling
The grammar as defined can produce two specific errors.

Missing Method Calls. Calls to non-existent methods are
dealt with by changing all instances of the method name
used to the name of an existing method that has with the
lowest Levenshtein distance to the original.

Incorrect Number of Arguments. This is handled by re-
ducing calls with too many parameters to the correct size,
and padding calls with too few parameters with zeroes.

This transformation process manipulates the deepest
method calls first (i.e. method calls that are used as param-
eters to other calls) to ensure that the resulting program is
well-formed and that all calls to the affected method use the
correct number of arguments.

Local Approach
Whereas the global robustness layer waits for a protected
method to encounter a fatal error before attempting to repair
the region of source code responsible for its cause, the local
robustness layer is designed to achieve robustness by adapt-
ing the Ruby kernel itself to ensure that fatal exceptions are
never raised in the first instance.

Instead of using a set of strategies to heal from specific
errors, a set of changes are made to areas of the Ruby ker-
nel capable of producing such errors, via a process known
as “monkey patching” (Perrotta, 2010). By applying mod-
ifications to certain aspects of the programming language,

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/alife2014/26/71/1901889/978-0-262-32621-6-ch013.pdf by guest on 16 April 2023

Figure 5: An overview of the local robustness layer design.

there is no need for a central entity to handle the execution
and repair of protected methods; instead each fix acts in-
dependently, and the combination of them produces a thin
robustness layer.

Local Error Handling
Missing Method Calls. To deal with calls to non-
existent functions, the local approach implements Ruby’s
method_missing hook in the Module class, which is
called when a requested method cannot be found inside a
particular class.

The implementation of this function is similar to the ap-
proach taken to handling missing method calls in the global
robustness layer; the function call is routed to the suitable
function with the lowest Levenshtein distance to the re-
quested function.

This re-routing mechanism also enforces a maximum dis-
tance constraint, which prevents the call from being routed
to a function whose name is too far away from the requested
method.

Incorrect Number of Arguments. Although the
missing_method callback is capable of routing calls
to non-existent functions towards their closest candidate
function, this behaviour alone does not prevent an error
being raised when the wrong number of arguments are then
supplied.

To provide robustness against such errors, the implemen-
tation makes use of the method_added callback and the
remove_methodmagic functions. Since there are no call-
backs in place to handle function calls to existing functions
with the incorrect number of arguments, the implementa-
tion instead captures and stores the object for every method
added to the module in a private hash (indexed by the name
of the method), via the method_added callback, before
immediately removing the method from the module via the
remove_method.

Every method call made to the module then invokes the
missing_method callback, since methods are removed
immediately after being added. The missing_method
callback checks if the requested method “exists” by look-
ing for its entry in the method hash; if there is no entry for
the method then the closest candidate function is selected

Selection Tournament
Mutation Uniform Random
Crossover Two Point
Replacement Generational
Evaluation Limit 10,000

Table 1: EA setup used for all experiments.

instead (if this is not possible then an exception is raised),
before adjusting its arguments to agree with the arity of the
selected method.

The arguments provided with the method call are made
to fit with the expected argument structure by removing ex-
cess arguments from the end of the arguments array or by
padding the arguments with zeroes to the right to compen-
sate for missing arguments.

Experiments
To determine the effect of the robustness layer on the evo-
lution trajectory during GE, and to test the design hypothe-
sis, we have conducted a series of benchmark evolutionary
experiments. To perform these experiments, we used our
own EA implementation, written in Ruby, whose compo-
nents are detailed in Table 1. (After some preliminary test-
ing, we found that two-point crossover yielded better results
than the more traditional single point crossover.)

These experiments compare the performance and be-
haviour of GE using global, local and no robustness mea-
sures, across a number of benchmark multi-modal symbolic
regression problems from McDermott et al. (2012), listed in
Table 2.

The genome is a fixed-length list of 100 integers, each
taking a value between 0 and 231−1. The mutation operator
uses uniform random replacement, replacing the value of a
codon with a uniform random value from the legal range.
Each genome is initialised with 100 uniform random values
from the legal range.

The evaluation function measures the fitness of individ-
uals as the sum of squared differences between their actual
and expected results using data from a pre-generated train-
ing set. Hence low values are better than higher values, and
the best achievable fitness is 0.

Calibration
Good parameter choices for each robustness measure, cho-
sen from a given set of possible parameter values (Table 3),
were determined through calibration based on the Keijizer-
15 benchmark.

Due to limits upon time and computational resources, an
exhaustive search of the space of all possible parameters
is not possible. Instead, we employed the Relevance Es-
timation and Value Calibration of Evolutionary Algorithm

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/alife2014/26/71/1901889/978-0-262-32621-6-ch013.pdf by guest on 16 April 2023

Name Vars Objective Function Training Set

Koza-1 1 x4 + x3 + x2 + x U [−1, 1, 20]
Koza-3 1 x6 − 2x4 + x2 U [−1, 1, 20]
Keijzer-12 2 x4 − x3 + y2

2 − y U [−3, 3, 20]
Keijzer-14 2 8/(2 + x2 + y2) U [−3, 3, 20]
Keijzer-15 2 x3

5 + y3

2 − y − x U [−3, 3, 20]

Table 2: Regression problems used to perform comparison.
U [a, b, c] is c uniform random samples drawn from a to b,
inclusive, for the variable.

Parameter Range

Tournament Size [2, 10]
Elitism [0.0, 0.5]
Mutation Rate [0.001, 0.5]
Crossover Rate [0.1, 1.0]
Population Size [10, 200]

Table 3: The space of evolutionary parameter values.

Parameters (REVAC) method (Nannen and Eiben, 2007) to
calibrate the evolutionary parameters of our algorithm.

We used the REVAC parameters of Smit and Eiben
(2010), except with fewer evaluations (1000 instead of 5000)
to reduce computational effort (Table 4). To measure the ex-
pected performance of each parameter vector, we use the
mean best fitness (MBF) across a number of runs.

The results of calibration are shown in Table 5, and are
the evolutionary parameters used for the evolutionary exper-
iments.

Main Experiments

After determining good evolutionary parameters to use for
each of the robustness measures, we compared the perfor-
mance of each of the measures over 100 runs of each of the
benchmark functions.

Results from these experiments (Figure 6 and Table 6)
show an improvement in both the median and minimum best
fitness values when using either local or global measures,
compared to using no robustness measures, for all bench-
marks except Koza-3.

In all cases, the use of local robustness measures gave a
minimum best fitness that was at least as good as that ob-
tained using global robustness measures, and was usually
better; this may be due to the local robustness layer’s ability
to cope with an unlimited number of errors within any given
program.

Figure 6: Distribution of best fitness values across 100 runs
for each benchmark (low fitness values are better).

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/alife2014/26/71/1901889/978-0-262-32621-6-ch013.pdf by guest on 16 April 2023

Population size 80
Best size 40
Smoothing coefficient 10
Repetitions per vector 10
Maximum number of vectors tested 1000

Table 4: REVAC parameters used during all tuning sessions.

Parameter Global Local None

Tournament Size 2 4 2
Elitism 0.440 0.459 0.438
Mutation Rate 0.425 0.363 0.375
Crossover Rate 0.705 0.544 0.764
Population Size 161 161 189

Table 5: The parameter vectors for each measure.

Statistical Significance

We used the non-parametric Mann-Whitney U test to mea-
sure the statistical significance of the results, and to test the
null hypothesis, H0: “the use of robustness measures have
no effect on the fitness of the best individual found during
evolution, compared to using no measures, when evolving a
soft grammar.”

We test to the standard 95% confidence level. We are per-
forming 10 benchmark comparisons (Table 7), so we apply a
Bonferroni correction and require each comparison to have
a confidence level of 99.5%, or p < 0.005. Results given
in Table 7 show that p < 0.005 on each benchmark except
Koza-3. We reject the null hypothesis at the 95% confidence
level, except for Koza-3.

Since using a large enough sample is usually enough to
produce a statistically significant result, we also measure
the effect size; we use the non-parametric Vargha-Delaney A
value (Vargha and Delaney, 2000). From the results shown
in Table 7, we can observe a large effect size between the
use of global or local measures and no measures on almost
of the benchmark functions, again except for Koza-3. These
results suggest that the use of robustness measures produce
a significant difference to the best fitness value found during
evolution.

Conclusions

We have designed, implemented and tested two approaches
that exploit reflection to perform self-repair in programs
evolved using GE. We have demonstrated that both these
measures have a statistically significant effect on the perfor-
mance of GE using soft grammars in a series of benchmark
functions.

Max UQ Median LQ Min

Global Measures
Koza-1 13.415 11.682 7.387 7.291 0.460
Koza-3 0.143 0.794 0.071 0.066 0.0652
Keijzer-12 40.246 40.170 40.156 39.439 39.274
Keijzer-14 83.195 76.049 72.756 69.552 59.833
Keijzer-15 70.280 70.012 45.935 30.223 26.100

Local Measures
Koza-1 13.412 11.792 10.267 7.387 1.246
Koza-3 0.134 0.079 0.069 0.066 0.065
Keijzer-12 40.232 40.157 39.620 39.390 32.502
Keijzer-14 83.195 76.208 72.318 69.541 52.359
Keijzer-15 70.443 64.435 38.239 29.914 25.987

No Measures
Koza-1 20.801 20.801 20.801 20.801 20.801
Koza-3 0.173 0.079 0.078 0.069 0.065
Keijzer-12 40.537 40.185 40.185 40.158 40.156
Keijzer-14 83.787 83.195 83.195 83.195 83.195
Keijzer-15 70.280 70.162 70.162 70.156 70.153

Table 6: Results from the benchmark experiments (low fit-
ness values are better)

Measure Benchmark p A

Global Koza-1 3.293×10−30 1.000
Koza-3 0.0173 0.595
Keijzer-12 3.761×10−12 0.781
Keijzer-14 1.003×10−35 0.982
Keijzer-15 1.304×10−19 0.864

Local Koza-1 4.163×10−39 1.000
Koza-3 0.0011 0.630
Keijzer-12 4.483×10−20 0.872
Keijzer-14 2.670×10−37 0.995
Keijzer-15 3.044×10−30 0.962

Table 7: Statistical significance (Mann-Whitney U test p)
and effect size (Vargha-Delaney A value) of use of global
and local robustness measures each compared to no mea-
sures. An A value > 0.56 is a “small” effect; an A value
> 0.71 is a “large” effect.

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/alife2014/26/71/1901889/978-0-262-32621-6-ch013.pdf by guest on 16 April 2023

Limitations

Although the local robustness layer is capable of handling
the errors investigated here, to handle each error, a series of
changes to the Ruby kernel has to be made. This approach is
thus limited by the ability of the Ruby kernel to catch such
errors. More complex errors, such as name errors raised
when an unreferenced variable is used, require the robust-
ness layer to know their context and to modify the original
source code, and cannot be intercepted and dealt with on the
fly. Since the global robustness layer is capable of examin-
ing the context of errors, and has the required ability to apply
changes to the source code, it is better equipped to diagnose
and repair a far wider category of errors.

Whilst the local robustness measures performed well
across all of the problems, an unfortunate consequence of
their changes to the Ruby kernel restricts them to a single
thread during evolution. However, this shortcoming may be
addressed using Ruby’s recently introduced refinement func-
tionality (Cooper, 2010), which allows kernel changes to be
localised within a given context.

Another weakness of the local approach is that its inherent
handling of errors on the fly means that the semantics of pro-
grams produced during evolution may not be the same when
the local robustness layer is not deployed, since the code is
never changed and errors will no longer be dealt with. One
solution to this problem may be to pass individuals to a fi-
naliser at the end of the evolutionary process, which analy-
ses the execution of their associated program and monitors
exceptions caught by each of the patches to determine the
effective source code of the program.

Future Work

Having demonstrated the effectiveness of robustness mea-
sures when combined with soft grammars, we are now in-
vestigating the use of radically more expressive grammars,
modelling subsets of an entire programming language, ca-
pable of universal computation.

We believe that by taking this approach, we can free the
programmer from performing arbitrary decisions on their
choice of grammar, and that entirely novel solutions to prob-
lems, beyond the scope of conventional hard grammars, may
be discovered.

We are also investigating the use of techniques which al-
low the use of alternative meta-languages to perform correc-
tion, instead of the same language as the program, allowing
programs to be evolved in arbitrary languages, regardless of
their support for reflection.

Our long term goal is to use such techniques in the devel-
opment of an open-ended an open-ended reflective software
architecture to support open-ended evolution in silico (Step-
ney and Hoverd, 2011).

References
Cooper, P. (2010). Ruby Refinements: An Overview of a New

Proposed Ruby Feature. http://www.rubyinside.com/ruby-
refinements-an-overview-of-a-new-proposed-ruby-feature-
3978.html.

Dempsey, I., O’Neill, M., and Brabazon, A. (2009). Foundations in
Grammatical Evolution for Dynamic Environments. Springer.

Ferber, J. (1989). Computational reflection in class based object-
oriented languages. In OOPSLA ’89, pages 317–326. ACM.

Haydarlou, A. R., Overeinder, B. J., and Brazier, F. M. T. (2005).
A self-healing approach for object-oriented applications. In
Proc. 3rd International Workshop on Self-Adaptive and Auto-
nomic Computing Systems, pages 191–195.

Kephart, J. and Chess, D. (2003). The vision of autonomic com-
puting. Computer, 36(1):41–50.

Maes, P. (1987). Concepts and experiments in computational re-
flection. ACM Sigplan Notices, 22(12):147–155.

McDermott, J., White, D. R., Luke, S., Manzoni, L., Castelli,
M., Vanneschi, L., Jaskowski, W., Krawiec, K., Harper, R.,
De Jong, K., and O’Reilly, U.-M. (2012). Genetic program-
ming needs better benchmarks. In GECCO ’12, pages 791–
798. ACM.

Nannen, V. and Eiben, A. E. (2007). Relevance estimation and
value calibration of evolutionary algorithm parameters. In
IJCAI’07, pages 975–980. AAAI Press.

O’Neill, M. and Brabazon, A. (2006). Grammatical Swarm: The
generation of programs by social programming. Natural
Computing, 5(4):443–462.

O’Neill, M., Ryan, C., and Nicolau, M. (2001). Grammar defined
introns: An investigation into grammars, introns, and bias in
grammatical evolution. In GECCO 2001, pages 97–103.

Perrotta, P. (2010). Metaprogramming Ruby. Pragmatic Bookshelf.

Ryan, C., Collins, J., , and O’Neill, M. (1998). Grammatical Evo-
lution: Evolving programs for an arbitrary language. In Proc.
1st European Workshop on Genetic Programming, volume
1391 of LNCS, pages 83–95. Springer.

Smit, S. K. and Eiben, A. (2010). Beating the ‘world champion’
evolutionary algorithm via REVAC tuning. In CEC 2010,
pages 1–8. IEEE.

Smith, B. C. (1982). Reflection and semantics in a procedural lan-
guage. PhD thesis, Massachusetts Institute of Technology,
Laboratory for Computer Science.

Stepney, S. and Hoverd, T. (2011). Reflecting on open-ended evo-
lution. In ECAL 2011, Paris, France, August 2011, pages
781–788. MIT Press.

Stump, A. (2009). Directly reflective meta-programming. Higher
Order Symbol. Comput., 22(2):115–144.

Tschudin, C. F. (2003). Fraglets – a metabolistic execution model
for communication protocols. In Proc. 2nd Annual Sym-
posium on Autonomous Intelligent Networks and Systems
(AINS), Menlo Park.

Vargha, A. and Delaney, H. D. (2000). A critique and improvement
of the CL common language effect size statistics of McGraw
and Wong. J. Educ. Behav. Stat., 25(2):101–132.

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/alife2014/26/71/1901889/978-0-262-32621-6-ch013.pdf by guest on 16 April 2023

