
Advanced Techniques for

Search-Based Program Repair

christopher steven timperley

Ph.D.

University of York,
Computer Science

June 2017

2

Abstract

Debugging and repairing software defects costs the global economy hundreds of bil-
lions of dollars annually, and accounts for as much as 50% of programmers’ time. To
tackle the burgeoning expense of repair, researchers have proposed the use of novel
techniques to automatically localise and repair such defects. Collectively, these tech-
niques are referred to as automated program repair.

Despite promising, early results, recent studies have demonstrated that existing au-
tomated program repair techniques are considerably less e�ective than previously
believed. Current approaches are limited either in terms of the number and kinds
of bugs they can �x, the size of patches they can produce, or the programs to which
they can be applied. To become economically viable, automated program repair
needs to overcome all of these limitations.

Search-based repair is the only approach to program repair which may be applied to
any bug or program, without assuming the existence of formal speci�cations. De-
spite its generality, current search-based techniques are restricted; they are either
e�cient, or capable of �xing multiple-line bugs—no existing technique is both. Fur-
thermore, most techniques rely on the assumption that the material necessary to
craft a repair already exists within the faulty program. By using existing code to
craft repairs, the size of the search space is vastly reduced, compared to generating
code from scratch. However, recent results, which show that almost all repairs gen-
erated by a number of search-based techniques can be explained as deletion, lead us
to question whether this assumption is valid.

In this thesis, we identify the challenges facing search-based program repair, and
demonstrate ways of tackling them. We explore if and how the knowledge of can-
didate patch evaluations can be used to locate the source of bugs. We use software
repository mining techniques to discover the form of a better repair model capable
of addressing a greater number of bugs. We conduct a theoretical and empirical anal-
ysis of existing search algorithms for repair, before demonstrating a more e�ective
alternative, inspired by greedy algorithms. To ensure reproducibility, we propose
and use a methodology for conducting high-quality automated program research.
Finally, we assess our progress towards solving the challenges of search-based pro-
gram repair, and re�ect on the future of the �eld.

3

4

Contents

Abstract 3

Acknowledgements 13

Declaration 15

1 Introduction 17

1.1 Motivation . 19
1.2 Challenges . 22
1.3 Research Questions . 23
1.4 Contributions . 24
1.5 Document Structure . 26

2 Background 27

2.1 Automated Program Repair . 27
2.2 Search-Based Repair . 31
2.3 Semantics-Based Repair . 50
2.4 Speci�cation-Based Repair . 57
2.5 Related Techniques . 60
2.6 Concluding Remarks . 62

3 Tools and Techniques 65

3.1 Bug Scenarios . 66
3.2 Pythia . 68
3.3 RepairBox . 75
3.4 Methodology . 84
3.5 Conclusion . 85

4 Fault Localisation 87

4.1 Background . 88
4.2 Analysis . 107
4.3 Approach . 114
4.4 Discussion & Conclusion . 116

5 Repair Model 119

5.1 Related Work . 120
5.2 Motivation for Study . 127
5.3 Methodology . 128
5.4 Repair Model . 131
5.5 Approach . 138
5.6 Results . 140
5.7 Discussion & Conclusion . 143

5

CONTENTS

6 Search 149

6.1 Related Work . 151
6.2 Theoretical Analysis . 157
6.3 Empirical Study . 166
6.4 Greedy Algorithm . 181
6.5 Future Work . 188
6.6 Conclusion . 191

7 Conclusion 193

7.1 Summary . 193
7.2 Future Work . 196
7.3 Concluding Remarks . 200

Appendices 203

A Reproducibility 205

A.1 Fault Localisation . 205
A.2 Repair Model . 205
A.3 Search . 205

B Repair Action Mining 207

B.1 AST and Edit Script Generation . 207
B.2 Detection Rules . 208

C Additional Fault Localisation Results 215

Bibliography 217

6

List of Tables

2.1 Examples of di�erent types of defect classes and the shared proper-
ties by which they are de�ned. Adapted from [Monperrus, 2014]. . 42

2.2 A list of the repair actions within the repair model for History Driven
Program Repair, separated by their sources [Le et al., 2016]. 49

2.3 MintHint’s repair model, or hints, and the kinds of faults that each
hint is designed to address. Taken from [Kaleeswaran et al., 2014]. . 51

4.1 The average precision of HybridMUSE as its mutant sampling rate
is adjusted. Taken from [Moon et al., 2014b]. 105

4.2 Details of the subjects we studied for our preliminary mutation anal-
ysis. KLOC measures the number of thousands of lines of C code in
the program, as calculated by cloc. Tests states the average number
of test cases used by bugs for that program. 109

4.3 Speci�cations for Amazon EC2 instances used to perform mutation
analysis on 15 arti�cal bugs. 109

4.4 Speci�cations of the Microsoft Azure compute instances used to per-
form analysis on 13 real-world bugs. 110

4.5 A summary of the mutation analysis results for each bug scenario.
% Compiling speci�es the percentage of mutants that successfully
compiled. % Neutral describes the percentage of (compiling) mu-
tants that had no e�ect on the outcome of the tests. % Lethal de-
scribes the percentage of (compiling) mutants (covering at least one
positive test) that failed all of their covered tests. Mutants speci�es
the number of mutants generated within the 12-hour random walk.
Sample Rate gives the average number of mutants per suspicious
statement. 111

4.6 Comparison of fault localisation accuracies achieved by di�erent ap-
proaches, where accuracy is measured by the probability of sam-
pling a statement containing a �x from the resulting distribution.
Results are given as percentages. 116

5.1 The number of instances of each repair action discovered across each
of the mined bugs, together the number (and percentage) of bugs
that involve at least one repair action of that type. 141

5.2 The graftability of each repair action in the contexts of the concrete
pool, containing the unchanged snippets from the �le under repair,
and the abstract pool, containing the unlabelled forms of the snip-
pets from the �le under repair. 142

7

LIST OF TABLES

5.3 A summary of the frequency of each of the proposed repair actions,
measured by the percentage of bugs in which it is encountered, to-
gether with the graftability of that repair action when the abstract
pool is used. E�ectiveness, computed as the product of frequency and
graftability, estimates the fraction of bugs for which a given repair
action may graft a repair. 145

6.1 The baseline parameters of the algorithm used within each run. . . 168
6.2 Speci�cations of the Microsoft Azure F4 compute instances used to

collect the data for this study. 168
6.3 A table of the subject programs used to conduct this study. # LOC

describes the number of source code lines in the original program,
as measured by cloc. # Stmts speci�es the number of statements
within the GenProg’s pre-processed AST representation of the pro-
gram. # Tests gives the size of the original test suite for the program. 171

6.4 A summary of the bugs for which a repair was found at least once
over the ten runs, for each con�guration. Xindicates that at least
one patch was found for the given bug-con�guration. 173

6.5 A comparison of the reliability of di�erent con�gurations for each
bug scenario. The presence of an “—” symbol indicates that no patches
were found for that given bug-con�guration. 174

6.6 A summary of the median number of unique candidate patch evalu-
ations required to �nd a repair, for each bug-scenario. The presence
of an “—” symbol indicates that no patches were found for that bug-
con�guration. 175

6.7 An overview of the cost of �nding a patch for each bug-con�guration,
measured by the total number of unique candidate patch evalua-
tions, across all runs, divided by the number of runs that were suc-
cessful. Bug-con�gurations with an “—” symbol indicate that no
patches were found during any of the runs. 176

6.8 A comparison of the bugs patched by each technique. 187
6.9 A comparison of the reliability achieved by the genetic and greedy

search algorithms, measured by the fraction of runs wherein an ac-
ceptable repair was found. An “—” is used to denote bug-con�gurations
where no repair was found across any of the runs. 188

6.10 A comparison of e�ciency between the genetic search and greedy
search algorithms, measured by the total wall-clock time across all
runs, in seconds, divided by the number of successful runs. Reduction
describes the reduction factor achieved by the greedy algorithm,
compared to the genetic algorithm. 189

C.1 The e�ectiveness of various fault localisation schemes, measured by
the probability of sampling a �xable statement. 216

8

List of Figures

2.1 The general automated repair process accepts the source code for
a faulty program, together with a test suite, containing failed test
cases, exposing the faults within the program. From these, the pos-
sible locations of the faults are determined, and for some repair ap-
proaches, a pool of donor code is generated from the input program.
Using the contents of the donor pool, together with a number of
basic repair actions, the search generates and evaluates candidate
patches, until one is found that passes all tests within the suite. . . 28

2.2 An example bug scenario, adapted from the real-world Zune leap
year bug [Coldewey, 2008]. The program accepts a date, given as
the number of days since January 1st 1980, and should determine
the year to which that date belongs. In the event that year is a leap
year and days ever becomes 366, the program will enter an in�nite
loop. 29

2.3 Before the repair process can begin, each of the statements within
the program is identi�ed and annotated with a unique SID. 30

2.4 A test suite for our running example, described by inputs and ex-
pected outputs for the program. Failing tests are assigned labels
starting with the letter “N”, indicating that they are negative test
cases. Conversely, passing tests are assigned a label starting with
the letter “P”, indicating that they are positive test cases. 31

2.5 An example of the output produced by the coverage generation pro-
cess. The columns on the right show which statements are covered
by a particular test. For the sake of brevity, we omit coverage for the
majority of the test suite. 32

2.6 An example of a fault spectrum for the Zune bug, together with the
suspiciousness values for each statement, as computed byGenProg’s
suspiciousness metric. 33

2.7 An illustration of GenProg’s one-point crossover operator. Two
parents A and B are accepted as input, and each is split into two
parts at a random point. The �rst part of A is combined with the
second part of B to form a child C . Similarly, the �rst part of B is
combined with the second part of A to form a child D. 37

2.8 An example change graph produced during the o�ine, bug �x min-
ing stage of history-driven program repair [Le et al., 2016]. Here, the
change graph shows the name of a parameter being updated within
the context of a method call. 46

9

LIST OF FIGURES

2.9 The �x schemas implemented inAutoFix-E [Wei et al., 2010]. snippet
is replaced with a sequence of routine calls that move the program
from a faulty state into a desired state. old_stmt may either be a sin-
gle statement, or the block to which a statement belongs. fail is used
to monitor the conditions under which the fault manifests, and not
to a�ect the appropriate action. 59

3.1 An overview of the inputs and outputs of Pythia’s oracle generation
process. 71

3.2 In this example, taken from the gzip object within the SIR, the test
suite attempts to destructively compress a given �le, deleting the
original version of the �le and replacing it with its zipped form. . . 72

3.3 An example test case description within a Pythia test manifest �le.
Each test case is described by its corresponding shell command, the
contents of its sandbox directory, and an optional human-readable
description. 72

3.4 An entry in an example Pythia oracle �le, describing the expected
behaviour of a test case from the corresponding manifest �le. . . . 73

3.5 Docker Containers (left) vs. Virtual Machines (right). Each con-
tainer sits on top of the Docker runtime, which provides access to
the kernel of the host machine. Each virtual machine virtualises its
own stack, down to the level of the hardware, and sits on top of a
hypervisor, which allows multiple VMs to run on the same machine. 78

3.6 Repair boxes can be used with repair tools by mounting the binaries,
provided by a repair tool container, into the repair box, via volume
mounting. 79

3.7 An example Docker�le for one of the libtiff scenarios within RepairBox. 80
3.8 The Docker image for a given bug scenario is built as a series of

layers. Each layer is shared by a number of images on the layer
above, reducing disk usage and build time. 81

3.9 An example bug scenario manifest. 82
3.10 An example tool manifest describing GenProg. 82
3.11 Example uses of the repairbox list command. 83
3.12 An example use of the repairbox launch command. 84

4.1 A screenshot of the original Tarantula fault localisation visualisa-
tion tool. Lines coloured red are executed primarily by the failing
test cases, suggesting a high suspiciousness. Lines that are mostly
covered by the passing test cases are coloured green. Brightness
is used to indicate a form of con�dence in the suspiciousness at-
tributed to a given line: The brightness of a line is given by greater
of the fraction of failing tests covered by the line, and the frac-
tion of passing tests covered. Source: http://spideruci.org/

fault-localization/ (May 2017). 90

10

http://spideruci.org/fault-localization/
http://spideruci.org/fault-localization/

LIST OF FIGURES

4.2 An example of backwards static slicing on a small program. The
source code on the right shows the sliced form of the source code
on the right, where (20, lines) is set as the slicing criterion. Adapted
from example given in [Silva, 2012]. 96

4.3 Comparing the mean pass-to-failure rate for applicable mutants, we
observe di�erent, but overlapping distributions for correct state-
ments and faulty statements (KS2 = 0.301; p = 0.003, A12 =
0.679 [medium e�ect]). 112

4.4 We observe similar distributions of mean f2p values for faulty and
correct statements (KS2 = 0.185; p = 0.177). In both cases, more
than half of the mutants at each statement did not pass any of the
previously failing tests. 113

6.1 An illustration of the implicit search space de�ned by GenProg’s
representation and a more granular alternative proposed by Oliveira
et al. [2016]. Whereas the type of operation, location, and donor
statement used by an edit are all considered to be part of a discrete,
evolvable unit withinGenProg’s representation, Oliveira et al. [2016]’s
intermediate representation allows each of these attributes to be
treated separately by a set of purpose-built crossover operators. . . 156

6.2 Patches tend to become longer over time. 158
6.3 Across all problems, we observe a monotonic increase in the total

number of edit operations contained within the population despite
the ability of crossover to generate smaller individuals. 159

6.4 An example of the destructive edit bias. In this example, a single-edit
patch is applied to the original AST, given on the left. This patch
replaces the node at location 1 with the node at location 5. When
the child tree is subsequently mutated, any changes to locations 1, 4
or 5 will have no e�ect. Note, the donor node, coloured black, may
not be the subject of a future mutation operation. Thus, the e�ects of
this replacement operation are permanent on all of its descendants
(except in cases where crossover moves this operation to another
child). 161

6.5 An example of the append bias. The AST in the top left shows the
state of original, faulty program. The AST in the top right shows the
repaired version of that AST, containing two missing statements α
and β. On the bottom half of the diagram, we show a repair sce-
nario in which this bias is encountered. In the �rst generation, α
is appended after the statement at location 4, matching its intended
position in the repaired program. In the following generation, β is
appended, yielding the incorrect sequence β;α. From the �rst mis-
take in the order of append operations, the search is unable to move
backwards to �nd a correct order; incorrect edits will continue to be
accumulate at statement 4. 163

11

LIST OF FIGURES

6.6 Our restricted representation implicitly encodes individuals as a �xed
length list of optional edits P . Each entry of the list, Pi, describes
the edit, if any, that should be applied to the statement with number i. 178

6.7 Uniform crossover takes two parents, A and B, and generates a pair
of symmetrical children, C and D. 179

12

Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. Susan Stepney, for her
continual support and guidance over the last �ve years, and for somehow always
managing to give me feedback at a superhuman pace. I would also like to extend
my thanks to the (former) members of EvoEvo research group for many stimulating
discussions: Dr. Simon Hickinbotham, Dr. Tim Hoverd, Dr. Paul Andrews, and Dr.
Tim Taylor. A special thanks goes to Dr. Dan Franks for his invaluable advice and
support, and whose teaching inspired me to begin this pursuit.

I am indebted to Prof. Claire Le Goues for her mentorship and advice, and for bring-
ing me into her research group. Our paths may never have crossed were it not for
the generous support of the William Gibbs Foundation, which made my visit to Prof.
Le Goues’s lab possible.

Thank you to Mum, Dad, Joe, Becky and Rick for always believing in me and for
never letting me forget where I’m from, and to Millie for her cuddly companion-
ship.

And �nally to Geraldine for living through every moment of this adventure with
me, and giving me the courage to see its end.

Nothing I can write here can begin to express my gratitude to you all. Thank
you.

13

LIST OF FIGURES

14

Declaration

I declare that this thesis is a presentation of original work, and that I am the sole
author. This work has not previously been presented for an award at this, or any
other, University. All sources are acknowledged as references.

The study of mutation analysis for automated program repair, presented in Chap-
ter 4, has been accepted for publication and is due to appear in the proceedings of
SSBSE’17:

Christopher Steven Timperley, Susan Stepney, Claire Le Goues. An In-
vestigation into the Use of Mutation Analysis for Automated Program
Repair. SSBSE’17.

15

LIST OF FIGURES

16

CHAPTER 1

Introduction

According to a 2013 study [Judge Business School, Cambridge University, 2013], the
worldwide cost of debugging and repairing software bugs is estimated to be $312
billion per year; on average, programmers spend roughly 50% of their time �nding
and �xing bugs. Automated Program Repair (APR) is a new and emerging technique
that attempts to reduce this burden by automatically localising and �xing arbitrary
bugs.

In 2009, the research area of APR was born when GenProg [Weimer et al., 2009]
demonstrated the ability to �x arbitrary bugs in real-world C programs, using only
their provided test suites as an oracle. Although previous work had examined the
possibility of automatically detecting, and in some cases, �xing bugs, none of those
works considered the general case—each addressed a particular sub-set of bugs, un-
der restrictive assumptions [Demsky and Rinard, 2003; Perkins et al., 2009].

To automatically repair programs, GenProg uses a form of genetic programming
(GP). Whereas genetic programming is typically used to evolve entire programs
from scratch—albeit small ones—GenProg evolves patches, represented as a se-
quence of edit operations, instead. These operations are represented by one of three
statement-level program transformations: deletion, insertion, and replacement.1 To
constrain the search space, and to transform program repair into a tractable prob-
lem, these operations are crafted using existing code, supplied by the program under
repair, via a technique later referred to as plastic surgery [Barr et al., 2014]. Candi-
date patches are generated using this representation through a continual process of
mutation, crossover, and selection. Patches that pass a greater number of tests, and
especially those that pass previously failing tests, are identi�ed as partial solutions
by the search, and used as the basis of the next generation of patches. This process
of generation and validation continues until a patch that passes the entire test suite
is found.

At ICSE 2012 [Le Goues et al., 2012a], GenProg was shown to repair 55 out of
105 real-world bugs in large-scale C programs, including the PHP and Python in-
terpreters, and libti�. In the same year, at GECCO 2012, Le Goues et al. [2012c]
demonstrated how modi�cations to GenProg’s parameters could allow it to repair
another �ve bugs within the same dataset, and to reduce the wall-clock time re-
quired to do so. Automated program repair—an idea dreamt about for more than
half a century—appeared to have been conquered, overnight.

1Originally, GenProg implemented a swap operation, rather than replacement. This operation was
dropped from future versions when its authors found replacement to be a more e�ective alternative
[Le Goues et al., 2012c].

17

INTRODUCTION

Two years later, at ICSE 2014, Qi et al. [2014] showed that a form of random search—
restricted to a single-edit search space—outperformed the genetic algorithm used by
GenProg, as measured by the average Number of Test Case Evaluations required to
�nd a repair (NTCE). Whilst these results raised questions regarding the e�ective-
ness of using genetic algorithms for program repair, they could also be explained by
the aggressive optimisations made by the random search, and by its restriction to a
single-edit search space.

Finally, at ISSTA 2015, Qi et al. [2015] examined the patches generated by GenProg
for the ICSE 2012 dataset, and found that 104 of its 110 plausible patches could
be explained by a single functionality-deleting modi�cation. (e.g., deletion of an If
statement.) For the majority of bug scenarios within the ICSE 2012 dataset,2 the test
harness only checked the exit status of the program was zero. As a result, many
of the repairs reported by GenProg over�t to the test suite by simply ensuring
the program produces the correct exit status, instead of �xing the underlying bug:
Most patches either deleted parts of the program, or inserted premature exit(0) or
return statements. After addressing issues in the test harnesses, and extending the
original test suites, Qi et al. [2015] found that GenProg produced correct �xes for
2 out of 105 bugs; in both cases, these bugs could be patched through functionality
deletion alone (i.e., removing a set of statements from the program).

Motivated by these problems, at ESEC-FSE 2015, Long and Rinard [2015] introduced
an alternative search-based repair technique: Staged Program Repair (SPR). To avoid
over�tting3 due to functionality deletion, and to address a greater number of bugs,
SPR uses a richer set of repair actions (i.e., types of transformation that can be ap-
plied to the program), without an explicit deletion action. Although SPR does not
permit explicit functionality deletion, Mechtaev et al. [2016] demonstrated that SPR
still produces such patches implicitly. In addition to introducing a new repair model,
SPR uses a novel search technique to reduce the cost of �nding repairs: value search.
Value search allows SPR to determine whether a particular kind of transformation
(e.g., modi�cation of an if condition) can be used to �x the program; only once
the feasibility of a repair has been determined, does SPR attempt to �nd the values

required to concretely �x the bug (e.g., a �xed if condition).

Although SPR was shown to outperform GenProg in terms of the number of correct
repairs found within a 12-hour window, it is unclear how much of this is due to SPR’s
larger repair model, and to what extent value search improves e�ciency. Unfortu-
nately, value search has not been compared to any alternative search techniques—
using the same repair model—such as random search. Whilst SPR may o�er a more
e�cient way of generating single-edit patches, it is di�cult to see how its value
search algorithm could be extended to cover multiple edits, as Long and Rinard
[2015] note.

2The ICSE 2012 dataset would go on to form a sub-set of the bug scenarios within the ManyBugs
[Le Goues et al., 2015] dataset.

3In the context of automated program repair, the term “over�tting” is used to refer to candidate
repairs which pass the test suite but do not consitute correct repairs. (i.e., one could produce a test
that rejects the candidate repair.)

18

1.1. MOTIVATION

Since these discoveries, automated program repair techniques have been categorised
by three distinct approaches: search-based repair techniques, such as GenProg and
SPR, which generate candidate repairs according to a search algorithm, and evaluate
them until a patch is found which passes the entire test suite; semantics-based tech-
niques, such as Angelix [Mechtaev et al., 2016] and SearchRepair [Ke et al., 2015],
which use symbolic evaluation to guide patch synthesis; and speci�cation-based ap-
proaches, such as AutoFix-E [Wei et al., 2010], which use formal speci�cations to
synthesise �xes, rather than using test suites as their oracle.

Whilst semantics-based and speci�cation-based approaches have demonstrated promis-
ing results, especially in terms of patch quality, their real-world use is highly re-
stricted. Speci�cation-based approaches rely on the existence of formal speci�ca-
tions, which are rarely found in practice [Kossak et al., 2014]. Although semantics-
based approaches do not require the existence of formal speci�cations, instead re-
lying on the existence of a test suite, the limits of symbolic execution prevent their
application to real-world programs, in the general case. Existing semantics-based
techniques are unable to deal with code that involves side-e�ects (e.g., reading from
or writing to a �le), non-primitive data types (e.g., structs), or looping and recur-
sion.

Search-based program repair is the only approach capable of �xing arbitrary bugs,
without restrictions on the program, or the need for formal speci�cations. To ad-
dress a greater number of bugs, search-based techniques will need to expand their
repair models (i.e., the operations used to construct patches), improve their ability
to localise faults, and scale to bugs requiring multiple edits. In this thesis, we inves-
tigate the challenges facing search-based program repair, propose and demonstrate
e�ective ways to tackle them, and increase our understanding of the problem along
the way.

1.1. Motivation

In this section, we outline the motivation behind this thesis, and provide justi�cation
for our focus on search-based program repair of C programs.

Automated Repair of C Programs

Amongst other languages, automated program repair has been successfully applied
to programs written in C [Le Goues et al., 2012a; Long and Rinard, 2015, 2016; Mech-
taev et al., 2016; Tan and Roychoudhury, 2015], Java [Kim et al., 2013; Le et al., 2016;
Xuan et al., 2017], and Python [Ackling et al., 2011]. Accompanying each of these
languages is a unique set of opportunities and challenges:

• Being a dynamic language without the bene�ts of static type checking, bugs

19

INTRODUCTION

in Python may involve the use of unreferenced variables, passing (incorrect)
arguments of the wrong type, or unintended implicit conversions. At the same
time, being an interpreted language, with the capacity for introspection and
self-modi�cation, Python o�ers new avenues for (automated) debugging and
patch generation.

• Java, on the other hand, employs static type checking, allowing it to avoid this
class of run-time bugs. Additionally, unlike C, built-in memory management
(provided by the garbage collector) helps to prevent the majority of memory
leaks and segmentation faults.4

• In contrast to Java and Python, C provides no (built-in) memory management
and thus it su�ers from its own class of memory leaks, bu�er over�ows, seg-
mentation faults and pointer misuses. Furthermore, unlike Java and Python,
which (by default) provide the programmer with detailed information about
a program failure (in the form of a stack trace and exception messages), C
programs tend to almost devoid of useful information in such cases. Mak-
ing automated repair more di�cult still, C also lacks a standard framework
for testing. Projects tend to either provide an arbitrary set of scripts (usually
written in bash or Perl), or in rarer cases, to use their own bespoke testing
framework (PHP).

C, therefore, represents a challenging testing ground for automated program re-
pair, where knowledge of the bug is limited to its bare minimum. By demonstrating
the e�ectiveness of automated program techniques in such a barren environment,
one gains an increased con�dence in their applicability to a wider range of lan-
guages. Furthermore, C remains one of the most popular programming languages
in the world (ranked at #2 in the January 2017 TIOBE popularity index5, represent-
ing 9.35% of the market), and is widely used within production legacy code, where
speci�cations and test suites tend to be woefully lacking, and the original developers
are no longer around.

Most importantly, by using C as the focus of this thesis, we are able to build upon
the large body of existing techniques that target this language.

Search-Based Program Repair

Having presented our case for using the C programming language as the focus of
this thesis, below we put forward three reasons for pursuing search-based program
repair, rather than semantics- or speci�cation-based approaches.

1. Generality of Fixes: A number of techniques exist that are theoretically
capable of identifying and correcting bugs belonging to a particular class, such

4Note, garbage collection does not necessarily ensure Java programs are invulnerable to memory
leaks (or, in this case, heap over�ows). A common way of introducing such bugs stems from careless
storage of objects when using the singleton object pool pattern [Bloch, 2008].

5https://www.tiobe.com/tiobe-index/

20

https://www.tiobe.com/tiobe-index/

1.1. MOTIVATION

as memory leaks and integer over�ows [Coker and Ha�z, 2013; Gao et al.,
2015]. In practice, however, these techniques are only e�ective under limited
circumstances, and unlike search-based repair, they have no utility beyond
the speci�c bug class for which they were designed.

Given its ability to perform arbitrary modi�cations to the source code, the
search-based approach is (in theory) capable of solving any kind of bug, in-
cluding those that cannot be cleanly delineated into speci�c bug classes. In
contrast, many semantics-based techniques are limited to performing very
speci�c code transformations, such as the replacement of an if-condition, or
the RHS of an assignment expression.

Additionally, search-based approaches can be used to produce �xes spanning
multiple lines and �les, unlike the majority of alternatives, which tend to be
limited to modi�cation of a single statement (or expression), or the introduc-
tion of a contiguous block of statements (in the case of SearchRepair). Of
the non-search-based approaches to automated repair, Angelix is the only
technique capable of producing �xes spanning more than a single statement.
Unlike search-based approaches, such as GenProg, Angelix su�ers a num-
ber of limitations with respect to the types of programs to which it can be
applied, discussed below.

2. Generality of Subjects: In addition to being free from limitations with re-
spect to the types of �xes that search-based repair can address (since the tech-
nique involves modi�cation of the source code), search-based repair is free
from any limitations on the types of programs on which it may be used. In
contrast, a number of semantics-based techniques, includingNOPOL, Angelix,
relifix and SearchRepair are unable to handle programs involving loops and
recursion, or code involving I/O operations (e.g., database and �le accesses).
Furthermore, techniques based on symbolic evaluation are only able to han-
dle code containing a limited set of primitive types (excluding �oating-point
numbers and structs).

3. Minimal requirements: Unlike speci�cation-based approaches, search-based
techniques do not assume the existence of any kind of contracts or speci�ca-
tions, which are seldom found in real-world code. Ideally, all software would
be provided with at least a partial speci�cation of its behaviour, but in real-
ity, the uptake of formal methods within the software engineering has been
highly limited. Assuming the existence of such artefacts highly restricts the
domain of problems to which automated repair may be applied. By forgo-
ing this need, the search-based approach becomes particularly well suited to
legacy systems, where knowledge is particularly limited.

Similarly, most search-based techniques do not require the existence of an or-
acle, unlike techniques such as relifix [Tan and Roychoudhury, 2015], which
uses previous (functioning) versions of the program to �x regressions.

The only requirements for repair are a test suite capable of exposing the bug

21

INTRODUCTION

(i.e., one with at least a single failing test case, covering the faulty code) and
the source code of the program.

In summary, search-based automated program repair poses the fewest limitations
and makes the least assumptions of the bug, allowing it to be applied in the widest
set of scenarios.

1.2. Challenges

Despite the potential of search-based repair, and promising early results produced
by GenProg, recent studies have highlighted a number of major challenges facing
the approach:

1. Patch Quality: Of the challenges facing search-based repair, and the wider
�eld in general, the problem of plausible, but incorrect patches (i.e., those that
pass the test suite as a result of over�tting) is perhaps the most controversial.
Recent studies [Qi et al., 2015; Smith et al., 2015] have demonstrated that the
majority of �xes reported for GenProg, the most popular search-based ap-
proach, were the result of over�tting to weak test suites (i.e., one which fails
to provide su�cient coverage or to thoroughly check the output of the pro-
gram). On further inspection, Qi et al. [2015] found that almost all patches
produced by GenProg were destructive (i.e., deletion or replacement of code).

Whilst most of the focus of the discussion with respect to patch quality has
focused on the shortcomings within the GenProg-family of search-based ap-
proaches (i.e., GenProg, RSRepair, AE), this problem is by no means exclu-
sive to them. The same phenomenon may also be observed in semantics-based
approaches, such as SPR and Prophet.

These results also cast uncertainty on the �ndings of previous studies within
this sub-�eld of program repair. In particular, it is no longer clear how ef-
fective the repair model used by these approaches is, nor is it clear that im-
provements and parameter tweaks of the search algorithms used by them are
e�ective in producing correct repairs. To move forward with search-based
repair, we must �rst take a step back to better understand its current abilities
and limitations.

2. E�ectiveness: The �ndings of the aforementioned studies on patch quality
also raise questions regarding the actual e�ectiveness of the search algorithm
and repair model used by GenProg. Assuming the existence of a more robust
test suite, less susceptible to over�tting, it is no longer clear to what extent
these components help GenProg to �nd correct repairs.

For automated program repair to see a wider acceptance within the software
engineering community, techniques must demonstrate the ability to solve

22

1.3. RESEARCH QUESTIONS

a signi�cant number of bugs across a diversity of programs. To be truly
convincing, automated repair requires the ability to perform arbitrary code
transformations—a feat that only search-based repair is capable of.

3. E�ciency: To become economically viable, repair techniques need to be able
to discover repairs within a reasonable amount of time. Ideally, the time re-
quired to �nd a patch should be measured in hours, or even minutes, rather
than days. This problem can be side-stepped through the use of cloud comput-
ing resources, which allow the repair process to be split across a large number
of compute nodes for a short period of time. In this case, the repair process
needs to be cost e�ective.

By improving the e�ciency of the search, the likelihood of encountering a
patch within a �xed resource window is increased, leading to simultaneous
gains in e�ectiveness. Moreover, increases in e�ciency will allow larger,
more complex search spaces to be explored, allowing the technique to solve a
greater number of bugs.

4. Scalability: Future program repair techniques will require the ability to pro-
duce multiple-edit patches for bugs in arbitrary programs. Due to the limits
of symbolic execution associated with semantics-based repair, search-based
techniques are the only foreseeable means of tackling this challenge. Despite
this, the majority of recent work in search-based program repair has focused
on increasing the ability to discover single-edit patches [Long and Rinard,
2015, 2016; Qi et al., 2014; Weimer et al., 2013].

Genetic algorithms, such as those used by GenProg, PAR, and HDRepair, are
the only proposed search technique capable of producing multi-edit patches,
in theory. In practice, however, almost all patches generated by those tools
can be reduced to a single edit; there is little evidence that this approach is
e�ective at discovering multi-edit patches. With recent results showing that a
form of random search outperformed the genetic algorithm used byGenProg,
there is a clear need to establish whether GAs are a suitable algorithm for
repair, and if not, what alternatives exist.

1.3. Research Questions

Motivated by the challenges facing search-based repair, this thesis seeks to increase
our understanding of each of the components of the search, and to explore ways in
which those components might be improved.

Motivated by recent results in the use of mutation analysis for fault localisation
[Moon et al., 2014a; Papadakis and Le Traon, 2015], we ask the following ques-
tion:

23

INTRODUCTION

• RQ1: Can the results of candidate patch evaluations, gathered over the course
of the search, be used to improve the accuracy of the fault localisation, online?

To understand how the repair model used by program repair techniques can be
improved to allow a greater number of bugs to be repaired, we ask the following
questions:

• RQ2: Is plastic surgery equally e�ective for all repair actions?

• RQ3: Can the e�ectiveness of plastic surgery be increased through the use of
unlabelled code snippets?

Given that GenProg is the only search-based repair technique capable of producing
multiple-edit patches, we ask the following questions:

• RQ4: Do biases within GenProg’s operators degrade its performance?

• RQ5: Does �tness help to guide GenProg’s search algorithm towards solu-
tions?

• RQ6: Is there a more e�ective search algorithm for generating multiple-edit
patches than the genetic algorithm used by GenProg?

To answer these questions, and to avoid the pitfalls of previous research, we propose
and use a novel methodology. Our methodology allows researchers to quickly and
easily reproduce the results of our experiments. It also provides a platform for others
to conduct high-quality program repair research.

1.4. Contributions

Below, we present a summary of the main research contributions made by this the-
sis.

• We identify a number of weaknesses and compromises in the current ap-
proach to conducting APR experiments. Motivated by those problems, we
present a better methodology for conducting APR experiments, and a suite of
tools for implementing that methodology.

• As part of our theoretical and empirical analyses of GenProg’s search al-
gorithm, we identify a number of phenomena and unintended biases, which
hamper the e�ciency and e�ectiveness of the search.

• We investigate the role of �tness within the search for repairs, and �nd that
the search is more e�ective when restricted to consideration of non-destructive
patches (i.e., patches that do not fail any of the previously passing tests). Fur-
ther gains in performance are attained when the number of previously failing
tests that are passed by a candidate patch is used to perform selection between

24

1.4. CONTRIBUTIONS

non-destructive patches (i.e., those which do not fail any previously passing
tests).

• We propose an alternative search algorithm for �nding multiple-edit repairs,
based on a greedy algorithm. We demonstrate that our algorithm outperforms
GenProg’s genetic algorithm in terms of e�ectiveness, e�ciency, and relia-
bility.

• We explore the feasibility of using test suite evaluations for candidate patches,
gathered over the course of the search, to increase the accuracy of the fault
localisation, online. In contrast to earlier studies of mutation-based fault lo-
calisation, conducted on arti�cial bugs in small programs, our results demon-
strate that this information leads to little to no improvement for real-world
bugs. We speculate on why these results might be the case, and outline direc-
tions for future research.

• Building on previous work concerning the e�ectiveness of plastic surgery, we
investigate its e�ectiveness at the level of actual repair actions. We report the
observed frequencies and graftabilities of a number of new and existing repair
actions. As part of this study, we also provide a more formal de�nition of each
of these repair actions.

• We �nd that repair actions that operate at �ner levels of granularity (i.e.,
expressions), are more amenable to plastic surgery than repair actions with
coarser levels of granularity (e.g., blocks, and to a lesser extent, statements).
We also �nd that removing labels from donor code substantially increases the
chances of successfully grafting a repair.

• We identify an unintended behaviour withinGenProg’s implementation, stem-
ming from its use of CIL [Necula et al., 2002], which may severely impact
GenProg’s performance and prevent it from �xing certain otherwise �xable
bugs.

In addition to these research contributions, we have developed a number of tools
over the course of this thesis:

• RepairBox: a high-performance platform for conducting reproducible em-
pirical studies of program repair, built on top of Docker. This tool was used
to conduct all of the relevant experiments within this thesis.

• Pythia: a tool for sandboxing test executions and automatically increasing
the quality of existing test suites. Pythia was used in combination with
RepairBox to reduce the risk of over�tting during our experiments.

• BugHunter: a tool for automatically mining bug �xes from Git repositories.
In addition to collecting (likely) bug �xing commits, BugHunter also extracts
repair action instances from those commits (e.g., a statement was inserted by
the �x), and allows a variety of analyses to be conducted on those instances.

• GenProg: we performed an extensive refactoring of the GenProg source

25

INTRODUCTION

code. New features include asynchronous test suite evaluation, JSON con-
�guration �les, and a component-based architecture, which allows GenProg
to be easily extended with new operators, algorithms and fault localisation
approaches.

1.5. Document Structure

The rest of this thesis is structured as follows:

• Chapter 2 – Background: provides the reader with the necessary back-
ground in automated program repair to understand the rest of the thesis.

• Chapter 3 – Tools and Techniques: discusses a number of problems in the
current approach to conducting APR experiments, before presenting a set of
tools to address them. These tools are used throughout the thesis, to ensure
reproducibility of results.

• Chapter 4 – Fault Localisation: investigates the feasibility of using the re-
sults of candidate patch evaluations, gathered over the course of the search,
to increase the accuracy of the fault localisation.

• Chapter 5 – Repair Model: measures the frequency and graftability of a set
of new and existing repair actions, to improve our understanding of e�ective
repair models, by examining bugs mined from version control histories.

• Chapter 6 – Search: conducts a theoretical and empirical analysis of GenProg’s
search algorithm, before presenting a new search algorithm, based on greedy
search.

• Chapter 7 –Conclusion: summarises the �ndings of this thesis, and outlines
several directions for future work.

26

CHAPTER 2

Background

In this chapter, we provide the reader with the necessary background to under-
stand the rest of this thesis. We �rst provide an overview of the general concepts
of program repair, before reviewing a number of the most popular search-based,
semantics-based and speci�cation-based repair techniques. Finally, we discuss a
number of loosely related techniques covering the space of code transformation
and repair more broadly.

2.1. Automated Program Repair

Provided the source code for a program, and an oracle capable of exposing its bugs,
APR attempts to �nd a variant of the program that satis�es the oracle; assuming a
su�ciently strong oracle, a repair to those bugs is the output of the repair process.
Although a few repair techniques use formal speci�cations, the majority make use of
existing test suites as their oracles instead: failing tests within these suites are used
to expose bugs, whilst passing tests are used to prevent the destruction of existing,
correct behaviours.

Repair approaches can be split into three categories: search-based, semantics-based,
and speci�cation-based. For the most part, each of these approaches shares the same
high-level approach to locating and repairing bugs, outlined in Figure 2.1. In the
proceeding sections of this chapter, we discuss each of these approaches. For the rest
of this section, we explore each of the high-level components in the repair process.
To aid this discussion, we look at a fault in a small program, given in Figure 2.2,
inspired by the real-world Zune leap year bug [Coldewey, 2008].

Input Program & Donor Pool

Before the repair process begins, each statement within the source code of the pro-
gram (or the sub-set of �les suspected to contain the bug) is identi�ed and uniquely
numbered with a statement identi�er, or SID, as illustrated in Figure 2.3. State-
ments are assigned an integer, starting at one, based on the order in which they
are encountered when walking through the collection of abstract syntax trees for
the program (although the exact SID for a statement makes no di�erence, only that
the SID is guaranteed to be unique). These SIDs are used to identify which areas

27

BACKGROUND

Figure 2.1: The general automated repair process accepts the source code for a faulty
program, together with a test suite, containing failed test cases, exposing the faults
within the program. From these, the possible locations of the faults are determined,
and for some repair approaches, a pool of donor code is generated from the input
program. Using the contents of the donor pool, together with a number of basic
repair actions, the search generates and evaluates candidate patches, until one is
found that passes all tests within the suite.

of the program were executed by the passing and failing test cases during the fault
localisation stage of the search.

Whilst this process of annotation occurs, some repair techniques, such as GenProg
[Le Goues et al., 2012a] and SPR [Long and Rinard, 2015], extract each of the iden-
ti�ed statements and place them into a donor code pool, ready to provide the nec-
essary code to produce repair candidates during the search. Other techniques, such
as SearchRepair [Ke et al., 2015], use a pre-computed donor code pool, built from
foreign source code, rather than the source code of the program under repair. Oth-
ers avoid the need for a donor pool entirely, synthesising fragments of code from
scratch [Long and Rinard, 2015; Mechtaev et al., 2016; Xuan et al., 2017].

Test Suite

With the exception of techniques where an oracle is provided, either in the form of
a (partial) formal speci�cation [Wei et al., 2010], or an alternative version of the pro-
gram [Tan and Roychoudhury, 2015], a patch is assumed to be correct if it passes all
tests within the test suite. For the purposes of conducting research, the test suite is
divided into a set of positive tests, representing the passing tests (and the behaviours
that should be preserved during repair), and a set of negative tests, representing the
failing tests. The need for this distinction is to ensure the same tests pass or fail
when an experiment is repeated.

28

2.1. AUTOMATED PROGRAM REPAIR

1 year = 1980;

2 days = atoi(argv[1]);

3 while (days > 365) {

4 if (isLeapYear(year)) {

5 if (days > 366) {

6 days -= 366;

7 year += 1;

8 }

9 } else {

10 days -= 365;

11 year += 1;

12 }

13 }

14 return year;

Figure 2.2: An example bug scenario, adapted from the real-world Zune leap year
bug [Coldewey, 2008]. The program accepts a date, given as the number of days
since January 1st 1980, and should determine the year to which that date belongs.
In the event that year is a leap year and days ever becomes 366, the program will
enter an in�nite loop.

Fault Localisation

To reduce the scale of the search landscape and to bring automated repair into the
realms of feasibility, the fault localisation stage of the repair process is used to select
a (relatively) small number of suspicious locations within the program as candidates
for modi�cation. For most existing automated repair techniques, these locations
correspond to statements within the program. (Rather than lines, expressions, or
any other logical grouping of code.)

To determine the set of faulty statements, and thus the candidates for modi�cation,
the �rst step of the fault localisation process is to compute coverage information for
the program. This coverage information describes the statements that are executed
by the program for each test within the suite. To generate coverage information for
the program, its �les (or a sub-set of them, believed to contain the fault) are sub-
ject to a process of source code instrumentation. Each statement of the program is
wrapped by a coverage statement, responsible for monitoring and logging its ex-
ecution. An example of the output of the coverage generation process is given in
Figure 2.5.

From this coverage information, the next step is to aggregate the data into a fault

spectrum. The fault spectrum concisely describes which statements were executed
(or covered) by each test, 1 and whether the result of the result of that test was failure

1Optionally, rather than recording whether a statement was executed, each cell in the spectrum
may be used to specify how many times a given statement was executed. Whilst this information may
be useful in dealing with in�nite loops, the need to log individual executions increases the burden on

29

BACKGROUND

Statement

1 year = 1980;

2 days = atoi(argv[1]);

3 while (days > 365) ...

4 if (isLeapYear(year)) ...

5 if (days > 366) ...

6 days -= 366;

7 year += 1;

8 else {}

9 else ...

10 days -= 365;

11 year += 1;

12 return year;

Figure 2.3: Before the repair process can begin, each of the statements within the
program is identi�ed and annotated with a unique SID.

or success. An example of such a spectrum is given in Figure 2.6.

Finally, using a lightweight form of fault localisation known as spectrum-based fault

localisation, the fault spectrum is transformed into a set of suspiciousness values,
encoding a measure of the belief that a given statement is responsible for producing
the bug. This process of transformation is performed using a suspiciousness metric,
µ(ep, ef , np, nf), which takes a count of the number of times a given statement
was (and was not) executed for passing and failing bugs, respectively. For each
statement, the suspiciousness metric transforms those counters into a real number,
or suspiciousness value, where higher values indicate a greater degree of belief that
the statement is (partly) responsible for producing the bug.

For the majority of automated repair techniques, a relatively simple suspiciousness
metric is employed. In the case of GenProg, its metric assigns a suspiciousness of
1.0 to statements executed exclusively by failing tests, 0.1 to statements executed by
both passing and failing tests, and 0.0 to statements that are not covered by a failing
test (thus eliminating them from consideration by the repair). More details on the
fault localisation process can be found in Chapter 4.

Repair Candidates

Once the fault localisation and donor code pool have been computed, the two are
combined according to a repair model to generate the space of possible repairs. The

the instrumented program, causing it to run considerably slower. This slowdown is made worse when
the user wishes to generate an execution path for each test, describing the order in which statements
were executed. For most real-world programs, the disk requirements of this path �le, potentially of
the order of GBs per test, make such an approach infeasible.

30

2.2. SEARCH-BASED REPAIR

Test Input Expected Passed

P1 -366 1980 3

P2 -100 1980 3

P3 0 1980 3

P4 365 1980 3

P5 367 1981 3

P6 1000 1982 3

P7 1826 1984 3

P8 2000 1985 3

N1 10593 2008 7

N2 12054 2012 7

N3 1827 1984 7

N4 366 1980 7

Figure 2.4: A test suite for our running example, described by inputs and expected
outputs for the program. Failing tests are assigned labels starting with the letter “N”,
indicating that they are negative test cases. Conversely, passing tests are assigned
a label starting with the letter “P”, indicating that they are positive test cases.

repair model of a technique is composed of a series of repair actions, each of which
abstractly describe the kinds of changes (or mutations) to the program that can be
made. For instance, the repair model of GenProg contains repair actions that allow
the insertion, replacement, and deletion of statements. A more detailed de�nition
of repair models is provided in Chapter 5.

An upper bound on the size of the search space S for a given problem and (search-
based) repair technique is:

S ≤
l∑

i=1

[F · (DR)]i (2.1)

where F is the number of suspicious statements, D is the number of donor code
fragments, R is the number of repair actions, and l is the maximum number of edits
that may be contained within the patch.

2.2. Search-Based Repair

Search-based repair techniques employ meta-heuristic search algorithms to explore
the space of possible repairs. Some of these techniques (e.g., GenProg and PAR
[Kim et al., 2013]) attempt to discover partial solutions during the search by treating
repair as an optimisation problem. Others, such as RSRepair [Qi et al., 2014] and AE

31

BACKGROUND

Statement P1 P6 N1 N4

1 year = 1980; • • • •
2 days = atoi(argv[1]); • • • •
3 while (days > 365) ... • • • •
4 if (isLeapYear(year)) ... • • •
5 if (days > 366) ... • • •
6 days -= 366; • •
7 year += 1; • •
8 else {} • •
9 else ... • •

10 days -= 365; • •
11 year += 1; • •
12 return year; • •

Figure 2.5: An example of the output produced by the coverage generation process.
The columns on the right show which statements are covered by a particular test.
For the sake of brevity, we omit coverage for the majority of the test suite.

[Weimer et al., 2013], treat repair as a decision problem, opting for higher e�ciencies
in the evaluation of candidate patches over the identi�cation and exploitation of
partial solution information. In all cases, candidate repairs are generated by the
search, and subject to evaluation. This process of evaluation involves compiling the
resulting program, and determining the outcomes of (a sub-set of) its test suite. The
processes of generation and evaluation continue until either an acceptable repair is
found (i.e., one which passes all of the tests) or a resource limit is reached.

For the rest of this section, we review the majority of search-based repair tech-
niques.

Co-Evolutionary Program Repair

Arcuri and Yao [2008] introduce the �rst search-based program technique, a year
prior to the publication of GenProg. Like GenProg, their technique uses evolu-
tionary computation, but whereas GenProg assesses the �tness of an individual
based on a �xed number of tests, their approach uses competitive co-evolution to
evolve a more robust set of tests. To automatically generate test cases—and thereby
facilitate co-evolution—users are required to provide a formal speci�cation for the
program.

Unlike all other search-based techniques, which operate on the abstract syntax trees
of a real-world program, whether directly, through representations such as theAST/WP,
or indirectly, through variants of the Patch representation, Arcuri and Yao [2008]’s
approach operates on a bespoke Strong-Typed Genetic Programming (STGP) rep-
resentation [Montana, 1995]. As with traditional applications of GP, programs are

32

2.2. SEARCH-BASED REPAIR

Statement ep ef np nf µ

1 year = 1980; 8 4 0 0 0.1
2 days = atoi(argv[1]); 8 4 0 0 0.1
3 while (days > 365) ... 8 4 0 0 0.1
4 if (isLeapYear(year)) ... 4 4 4 0 0.1
5 if (days > 366) ... 4 3 4 1 0.1
6 days -= 366; 4 3 4 1 0.1
7 year += 1; 4 3 4 1 0.1
8 else {} 0 4 0 0 1.0
9 else ... 3 3 5 1 0.1

10 days -= 365; 3 3 5 1 0.1
11 year += 1; 3 3 5 1 0.1
12 return year; 8 0 0 4 0.0

Figure 2.6: An example of a fault spectrum for the Zune bug, together with the sus-
piciousness values for each statement, as computed by GenProg’s suspiciousness
metric.

operated upon directly and mutations are synthesised from a set of primitives. Given
the relative proximity of the buggy program to its (correctly) repaired form—compared
to the large distances between the origin and a solution when attempting to synthe-
sise a program de novo—Arcuri and Yao [2008] forgo the need for crossover.

Although this representation is Turing-complete and incorporates a number of high-
level operations similar to those in C and Java, it signi�cantly lacks the expressive-
ness of those languages. In the general case, programs written in this dialect of
STGP may be easily transformed into C or Java. Transforming C or Java programs
into this STGP dialect is less trivial, however. Even if C or Java programs could be
transformed into this dialect of STGP, representing entire programs—or even single
�les—would require vast amounts of memory and incur a signi�cant overhead to
performance, as observed in earlier forms of GenProg using the AST/WP represen-
tation [Le Goues et al., 2012a]. Arcuri and Yao [2008]’s work is therefore a powerful
proof of concept of search-based program repair, rather than its �rst practical ap-
plication.

Rather than solely measuring �tness as a function of the number of passing and
failing tests, Arcuri and Yao [2008] use a richer �tness function, de�ned in Equation
2.2:

f(g) =
N(g)

N(g) + 1
+

E(g)

E(g) + 1
+
∑
t∈Ti

dP (t, g(t)) (2.2)

where g is a candidate solution, N(g) is the number of nodes in its tree, E(g) is the
number of exceptions encountered during its execution, and dP (t, g(t)) is a measure

33

BACKGROUND

of the distance between the expected and observed result for the execution of test
t.

Unlike subsequent approaches, the number of nodes for a given individual N(g) is
directly incorporated into the �tness function, acting as a form of bloat control; a
selective advantage is awarded to programs that are shorter than others. If the size
of the program is less than or equal to δN(buggy), where N(buggy) is the number
of nodes in the original program, then this bloat term is replaced by the constant
1.

The �tness function also incorporates a term based on the number of exceptions
produced by a given individual, E(g). Sharing a similar intuition to later work on
the use of failure-obliviousness for evolving Ruby programs [Timperley, 2013; Tim-
perley and Stepney, 2014], fallback semantics are provided for unsafe operations.
Speci�cally, both division by zero, and out-of-bounds array accesses are set to re-
turn zero instead. In theory, and as demonstrated by [Timperley and Stepney, 2014],
allowing execution to persist in the face of such exceptions creates a smoother �t-
ness landscape, which may allow certain classes of multiple-line errors to be solved
more easily.

Finally, Arcuri and Yao [2008] harness the results of the test suite by summing
the distance between the intended and observed outcomes dP (t, g(t)) for each test
t. Whereas later work treats the outcome of a test case as a binary variable (i.e.,
pass/fail), their distance metric shares more in common with previous work in ge-
netic programming, by measuring the distance between the observed and intended
return value of the function under repair.

• For tests where the function returns the intended outcome, dP = 0.

• In cases where the function returns an unexpected outcome, dP > 0. The
measurement of the magnitude of the di�erence between the two outcomes
is performed by a necessarily arbitrary distance function, as is the case with
traditional genetic programming. This distance function is automatically gen-
erated from a formal speci�cation for the program.

To avoid solutions over�tting to a �xed test suite, the tests used for evaluation are
competitively co-evolved in a separate population (of size 32). For the particular
program studied in the paper—an implementation of bubble-sort—each test within
the population is represented by a variable-length list of integers, representing an
input list to the sorting algorithm. For every 5 generations that the solution pop-
ulation is evolved, the test population is subject to 1024 generations of evolution
against the best program in the current population. The �tness of a given test t is
measured using the �tness function described in Equation 2.3:

f(t) =
∑
g∈Gi

dP (t, g(t)) (2.3)

where g ∈ Gi is an individual from the i-th generation, and dP (t, g(t)) is the dis-

34

2.2. SEARCH-BASED REPAIR

tance between the expected and observed outcome for this individual’s test execu-
tion. At the end of each of these 1024 generations, the best test case within the
population is added to a Hall of Fame [Rosin and Belew, 1997], which then becomes
the test suite for evaluating candidate patches.

In summary, Arcuri and Yao [2008]’s approach introduces the breakthrough idea of
using genetic programming to evolve patches, rather than entire programs—an idea
that underpins the seminal work in the �eld. Many of the ideas introduced in their
work, such as bloat control and the use of a richer �tness function, have proved to
be ahead of their time. Unlike the other approaches reviewed in this section, all of
which are usable repair tools, Arcuri and Yao [2008]’s work is instead a proof of
concept.

GenProg

GenProg can be viewed as both the seminal approach to the automated repair of
real-world programs, and the �rst viable search-based repair technique. At its core,
GenProg uses a form of genetic algorithm to search for its repairs. Like all other
genetic algorithms, GenProg’s search process can be seen as a continual cycle of
generation and evaluation, also referred to as validation within the automated repair
literature [Le Goues et al., 2012a; Long and Rinard, 2015].

The generation stage is responsible for generating a population of potential solu-
tions, based on (implicit) knowledge gained about previously encountered solutions
through evaluation of their �tness. Solutions deemed to be closer to a repair, where
distance is measured by a weighted sum of the number of the positive and negative
test cases passed by the candidate, are more likely to be used to inform the genera-
tion of future candidates. This assumes that �tness is correlated with edit distance,
and that solutions which pass a higher proportion of the test suite are more likely
to be close to a repair than solutions that pass fewer tests.

From a high-level perspective, GenProg, shares the same approach to generation as
all other genetic algorithms. Following a stage of initialisation, wherein a population
of single-edit patches is randomly sampled, the process of generation is sub-divided
into sub-processes of selection, crossover, and mutation. The resulting search algo-
rithm is given in Algorithm 1, together with a description of each of its stages.

Algorithm 1: GenProg’s search algorithm
population← initialise() ;
while solution not found and resources not exhausted do

parents← select(population) ;
population← crossover(parents) ;
population← mutation(population) ;
evaluate(population) ;

end

35

BACKGROUND

Individual Representation

To represent a candidate repair, each individual within the population is encoded as
a sequence of statement-level modi�cations to the abstract syntax tree of the faulty
program. To generate the corresponding repair, each of these modi�cations, or edits,
is applied in sequence. Each edit within this sequence, or patch, applies a particular
transformation to the statement associated with a given SID. The particular repair
model used by GenProg allows for three di�erent kinds of statement transforma-
tion, described below:

• Deletion: The edit DELETE x permanently removes the statement with SID
x from the program, together with any child statements that may be attached.

• Append: The edit APPEND x y copies the statement with SID y from the
original program, and appends it immediately after the statement with SID x.

• Replacement: The edit REPLACE x y copies the statement with SID y from
the original program, then permanently replaces the statement at SID x with
the copied statement.

Selection

The selection phase within GenProg selects which candidate repairs from the pop-
ulation of the previous generation should be chosen as parents, whose edits will be
used to construct the population for the next generation.

By default, this process of selection is performed using tournament selection. Tourna-
ment selection chooses n individuals as parents through a series of n tournaments.
For each tournament, k individuals are chosen from the population to be partici-
pants, at random with replacement. The best individual within each tournament is
granted entry into the next population.

The setting of k (a.k.a. tournament size) can be used to control selection pressure.
Low values of k exhibit little selection pressure, allowing more subpar solutions
to be accepted into the population. Conversely, high values of k increase the se-
lection pressure, driving selection towards only the �ttest solutions. By default,
GenProg uses a minimal k = 2 (k = 1 would be equivalent to uniform random
selection), preferring exploration of the search space over exploitation of its �ttest
solutions.

Crossover

Crossover within GenProg groups the selected parents into pairs and subjects each
pair to a crossover operation with probability Pc, also known as the crossover rate.
In the event of an application of the crossover operator, a pair of individuals are
generated from the edits of the two selected parents and added to the o�spring.

36

2.2. SEARCH-BASED REPAIR

Figure 2.7: An illustration of GenProg’s one-point crossover operator. Two parents
A and B are accepted as input, and each is split into two parts at a random point.
The �rst part ofA is combined with the second part ofB to form a childC . Similarly,
the �rst part of B is combined with the second part of A to form a child D.

After iterating across all pairs of parents, a new proto-population is formed from
the union of the multi-set of parents and the multi-set of o�spring. Unlike most
genetic algorithms [Eiben and Smith, 2015], where parents are replaced by their
o�spring in the event of a crossover, GenProg allows parents to be retained. This
behaviour is similar to a (µ + λ) evolutionary strategy [Eiben and Smith, 2015],
except that parents may also be subject to further mutation.

By default, GenProg uses a variant of variable-length one-point crossover, wherein
the lists of edits for each parent are split into two at a random point and then joined
together, as illustrated in Figure 2.7. Alternatively, a patch sub-set operator may be
used, which has previously been shown to improve performance [Le Goues et al.,
2012c].

Mutation

Following crossover, each individual within the proto-population is subject to mu-
tation with probability Pm, also known as the mutation rate, to form the popula-
tion. The mutation operator within GenProg accepts a single patch as its input,
and returns a new patch, formed by appending a newly sampled edit to the input
patch.

To generate the new edit, GenProg �rst selects a statement as the subject of the
edit, using the distribution de�ned by the fault localisation information. After a
statement has been selected as the site of the edit, GenProg decides whether the
edit should be a replacement, insertion, or deletion. By default, each edit type has
an equal probability of being selected, although their probabilities may be adjusted
to improve performance [Le Goues et al., 2012c]. Once an edit location and type have
been chosen, GenProg produces the set of all possible edits of that particular type
at the given location, and selects one of them at random as the chosen edit.

37

BACKGROUND

Test Case Sampling

In an e�ort to reduce the number of test case evaluations required to �nd an accept-
able patch, Fast et al. [2010] introduce the concept of test suite sampling to auto-
mated repair. Rather than computing the �tness of a candidate patch by subjecting
it to the whole test suite, each candidate is instead subject to its own random sample
of the test suite. Each sample is composed of all the negative tests, together with a
random selection of n% of the positive test cases, where n% is usually set to 10%
for larger problems, such as those in the ManyBugs benchmark set [Le Goues et al.,
2015]. If the candidate passes all tests in the sample, then, and only then, is it subject
to rest of the test suite, to determine whether it is an acceptable repair.

Fast et al. [2010] �nd that despite the noise introduced into the �tness function, the
use of sampling increased the performance of GenProg by 81%, when measured by
the number of test case evaluations required to �nd a repair.

Repair Minimisation

Upon �nding an acceptable repair that passes all tests within the test suite, GenProg
subjects the repair to a minimisation process, wherein redundant edits which have
no e�ect upon the outcome of the patch are removed [Le Goues et al., 2012a]. To
facilitate the minimisation process, the patch is �rst converted to an AST di�erence
using a variant of the Di�X XML di�erencing algorithm [Al-Ekram et al., 2005],
tailored to operate with CIL ASTs. This process transforms the patch into a series
of structured tree operations, describing the steps required to transform the orig-
inal program into its patched form, e.g., “Delete the node rooted at k”. The min-
imised repair is then computed by applying the delta debugging algorithm [Zeller
and Hildebrandt, 2002] to the sequence of edits, reducing them to their minimal
form.

Revealingly, in almost all cases, patches yielded by the minimisation process consist
of only a single edit, indicating that the algorithm is not �nding and combining
partial edits, as would be expected for a traditional genetic algorithm [Holland, 1992,
2000].

RSRepair

Qi et al. [2014] introduce RSRepair, an alternative search-based repair tool, to assess
whether GenProg’s search algorithm could be outperformed by random search.
The RSRepair algorithm, given in Algorithm 2, uses the same fault localisation and
search operators as used by GenProg, allowing a direct comparison between their

38

2.2. SEARCH-BASED REPAIR

search algorithms.

Algorithm 2: RSRepair algorithm
while solution not found and resources not exhausted do

location← sample(faultLocalisation) ;
edit ← sampleEdit(location) ;
candidate← apply(program, edit) ;
outcomes← evaluate(candidate) ;
if candidate passes all tests then

return candidate

end

As a result of abandoning the need for �tness, RSRepair is able to treat automated
repair as a decision problem, rather than an optimisation problem. This allows the
search to terminate the evaluation of a candidate patch on the �rst observation of
failure, substantially reducing the number of test case evaluations required by each
candidate. Additionally, this allows RSRepair to make use of test case prioritisation
[Rothermel et al., 2001], whereby tests that have been observed to be more likely to
fail over the course of the search are executed �rst, maximising the rate of incorrect
patch detection (and by extension, improving e�ciency, as measured by the number
of test case evaluations).

Another important di�erence between RSRepair and GenProg is that RSRepair
restricts itself to the much smaller space of single-edit patches; in contrast, GenProg
patches may contain an arbitrary number of edits. Since most patches reduce to only
a single edit, this allows RSRepair to consider substantially fewer candidates than
GenProg.

Results show that on 100 runs of a sub-set of the ManyBugs dataset, RSRepair
achieves a higher success rate (measured by the percentage of runs that found a
repair) than GenProg on 24/25 problems, and a lower mean number of test case
evaluations for 24/25 problems [Qi et al., 2014].

AE

Weimer et al. [2013] introduce the “Adaptive Search, Program Equivalence” (AE)
repair technique. Similar to RSRepair, AE operates using the same fault localisation
method as GenProg, and with a sub-set of its mutation operators. By default, AE
restricts itself to consideration of single edits patches, transforming the problem
into a decision problem. AE searches for repairs by iterating through each of the
possible Delete and Append operations at each statement within the program, in
order of suspiciousness.

By treating automated repair as a decision problem, AE is able to use test case pri-
oritisation to increase the e�ciency of the search. To achieve further e�ciency
gains, AE performs test suite reduction for each candidate patch, removing test cases

39

BACKGROUND

whose results are not a�ected by the patch, by checking statement coverage of each
test.

In addition to its adaptive search process, AE introduces the notion of approximate
program equivalency checking, which uses a series of syntactic and data�ow anal-
yses to �nd and prune equivalent repairs from the search space. To determine ap-
proximate program equivalence, the following three techniques are used:

1. Syntactic equality: By exploiting the observation that programs that are syn-
tactically identical are also semantically equivalent, AE removes duplicates of
identical statements from the pool of donor statements.

2. Dead code elimination: Using CIL’s [Necula et al., 2002] data�ow analysis
framework, AE is able to detect whether a particular mutation would insert
dead code into the program; this information is used to eliminate variants
from the search space.

3. Instruction scheduling: In many cases, a statement may be inserted into the
program at a number of di�erent points, all of which will yield the same se-
mantics. AE identi�es instances where two (or more) insertions would pro-
duce equivalent results, and removes redundant insertions from the search
space.

Results taken from a comparison between AE and GenProg [Weimer et al., 2013],
using the 55 bugs from the ManyBugs benchmark suite that were previously solved
by GenProg, showed that AE was able to �x 53 of the 55 bugs. In total, AE re-
quired 186 test suite evaluations across the search, compared to the 3252 required by
GenProg, giving an order of magnitude improvement in test case e�ciency.

PAR

Kim et al. [2013] propose a search-based program repair technique for repairing
Java programs, PAR, based on applying hand-crafted repair operators to generate
repairs. With the exception of its repair operators, PAR is identical to GenProg in
all other respects. These repair operators, or �x templates, described below, were
produced through manually inspection of more than 60,000 human-written patches
in open-source projects for common �x patterns.

1. Null checker: inserts an if-statement checking that all objects within context
at the target statement are not null.

2. Parameter replacement: replaces a randomly selected parameter from an
arbitrary function call at the fault location with a compatible variable or ex-
pression.

3. Method replacement: replaces the target method of a randomly selected
method call at the fault location with the name of a visible method with com-
patible parameters and return type.

40

2.2. SEARCH-BASED REPAIR

4. Parameter addition or removal: adds or removes a single parameter from
a method call at the fault location, provided the method has a compatible
overloaded sibling. As with the parameter replacement transformation, suit-
able variables and expressions are extracted from within the scope of the fault
statement to serve as additional parameters.

5. Object initialisation: introduces a new assignment statement, assigning a
newly-created object to a new local variable, before using the object as a pa-
rameter of a method invocation.

6. Sequence exchange: swaps the order of a sequence of identi�ed statements
within the program, where each statement is exchanged with its most similar
counterpart.

7. Range checking: inserts a series of if-statements, ensuring that all index
variables of array accesses are within lower and upper bounds.

8. Collection size checking: inserts an if-statement checking that an index
variable is smaller than the size of a collection object if faulty statements have
collection object references.

9. Lower bound setter: assigns a lower bound value to an index variable if the
faulty statements have array accesses.

10. Upper bound setter: assigns an upper bound value to an index variable if
the faulty statements contain array accesses.

11. O�-by-onemutator: modi�es an index variable by 1 if the faulty statements
have array accesses.

12. Class cast checker: inserts an if-statement, ensuring that castees implement
appropriate types when casting operations are performed.

13. Caster mutator: replaces the casting type of a casting operator within the
faulty statement with another type.

14. Casteemutator: replaces the subject of a casting operation within the faulty
statement with a di�erent variable, sharing a similar name.

15. Expression changer: replaces a conditional expression in the faulty state-
ment with a similar conditional expression, taken from the same source code.

16. Expression adder: inserts a similar expression into an existing expression
in a faulty statement, provided it contains a conditional expression.

Across 119 real-world bugs, Kim et al. [2013] found that PAR was able to produce
repairs for 27 of them, compared to 16 bug �xes achieved by GenProg. Further-
more, results of a human study involving 89 students and 164 developers found that
patches generated by PAR were more likely to be accepted than those produced by
GenProg.

41

BACKGROUND

Defect class according to... Examples of defect class

The root cause Incorrect variable initialisation, incorrect
con�guration, etc.

The symptom Segmentation fault, null pointer exceptions,
memory exhaustion, etc.

The �x Adding an input check, changing a method
call, restoring an invariant, etc.

Table 2.1: Examples of di�erent types of defect classes and the shared properties by
which they are de�ned. Adapted from [Monperrus, 2014].

A year after Kim et al. [2013] introduced PAR, Monperrus [2014] delivered a critical
review of the repair, challenging both its methodology and results.

After introducing the concept of defect classes—a family of bugs sharing some shared
property, outlined in Table 2.1—Monperrus [2014] argues that to fairly evaluate re-
pair techniques, one must compose the dataset according to the defect classes one
believes the tool addresses. Similarly, to achieve a fair comparison between tech-
niques, one must take care to account for the di�erent defect classes addressed by
each. Failing to do so, one may compose an unbalanced dataset, overrepresenting
the defect classes handled by one technique, whilst underrepresenting those of an-
other.

Monperrus [2014] highlights that Kim et al. [2013] fail to identify a priori, or to dis-
cuss a posteriori, the defect classes tackled by PAR—a problem common to a number
of repair techniques. Whereas GenProg aims to provide a highly generic approach
to program repair, theoretically capable of addressing all defect classes, PAR focuses
on addressing common programmer mistakes �tting its prede�ned repair templates.
Monperrus [2014] argues that Kim et al. [2013] evaluate on a dataset that may unin-
tentionally favour PAR, and that given the two techniques address di�erent defect
classes, that such a comparison is meaningless. Upon closer inspection, Monperrus
[2014] found that the majority of PAR’s repairs were produced using either the “Null
Pointer Checker” or the “Expression Adder, Remover, Replacer”—the remaining op-
erators �xed only a single bug each.

In addition to identifying problems in the (lack of) methodology used to construct
the dataset, Monperrus [2014] recognises a number of �awed assumptions underly-
ing the human study used to evaluate patch acceptability. Although the participants
of the study included 67 developers, none of them were responsible for maintaining
the programs used in the study. Therefore, the experiment assumes that the devel-
oper is able to judge the quality of a patch without knowledge of the codebase or the
wider context of the bug. Monperrus [2014] argues that without prior experience
with the codebase, participants are unlikely to accurately determine the quality and
correctness of a patch within a reasonable amount of time (e.g., 30 minutes), armed
only with the patch and a link to the bug report. Under these circumstances, then,

42

2.2. SEARCH-BASED REPAIR

Monperrus [2014] believes that the participants con�ate the notion of acceptability
with understandability; that is, participants select patches on the basis of whether
they or not they “look good”.

To explain why this con�ation is a problem, Monperrus [2014] discusses the di�er-
ent requirements of autonomous program repair techniques and patch recommen-
dation systems:

• Automated repair systems are intended to operate mostly at run-time, without
human assistance, and their patches are only required to serve as a temporary
solution.

• Conversely, recommendation systems are required to generate a set of (par-
tial) transformations, for a human developer during development or mainte-
nance, who is given the responsibility of selecting an acceptable change from
amongst them; the produced changes are expected to be long-lasting, rather
than ephemeral.

As a consequence of the di�ering assumptions and requirements of these two ap-
proaches, each should be assessed with its own evaluation criteria, in terms of un-
derstandability, correctness, and completeness: 2

• For fully automated repair techniques, such as GenProg and SPR, the only
considerations should be that correct and complete solutions are generated.
Given the temporary nature of its �xes, alien-looking solutions—lacking understandability—
should be treated with equal consideration.

• In contrast, patch suggestion systems should concern themselves less with
the completeness and correctness of a patch, and more with producing an
understandable, possibly partial solution that is likely to persist.

Given that PAR is presented as an automated repair technique, and not as a �x
suggestion tool, the methodology used to evaluate acceptability is compromised by
the bias towards understandable repairs and against alien repairs.

Staged Program Repair

As a more e�cient and higher quality means of generating repairs for C programs,
Long and Rinard [2015] introduce Staged Program Repair (SPR): a search-based re-
pair technique which combines parameterised transformation schemas and abstract
conditions to reduce the size of the search space. In lieu of GenProg’s generic
statement-level repair operators, SPR uses a set of parameterised transformation

schemas—each designed to tackle a particular class of defects—to generate its re-
pairs. Given a particular transformation schema, SPR performs target value search

2In this context, “completeness” refers to the ability of the repair tool to generate an executable
variant of the program. (i.e., all of the information required to repair the program should be encoded
within the patch.)

43

BACKGROUND

to determine whether there exists a parameter which would cause the schema to
yield an acceptable repair. This set of schemas is outlined below.

1. Condition Re�nement: Transforms the condition of a given if-statement
by conjoining or disjoining an abstract condition to its original condition.

2. Condition Introduction: Transforms a given statement such that the state-
ment is only executed when an abstract condition is true.

3. Conditional Control Flow Introduction: Inserts a new control-�ow state-
ment (e.g., return, break, goto) that executes only when an abstract condition
is true.

4. Insert Initialisation: Inserts a memory-initialisation statement before a se-
lected statement.

5. Value Replacement: Given a target statement, this transformation performs
one of the following replacements: one of its variables with another, an in-
voked function with another, or a constant with another constant.

6. Copy and Replace: Prepends an existing statement from elsewhere in the
program to the program point immediately before a selected statement, before
applying a value replacement transformation to the prepended statement.

After ranking the suspiciousness of statements according to spectrum-based fault
localisation, SPR attempts each of these transformation schemas—in the order given
above—at each statement, in order of their suspiciousness. For the �rst three of these
transformation schemas, SPR uses angelic debugging [Chandra et al., 2011] to deter-
mine if there exists an abstract condition which would result in an acceptable repair.
If so, SPR synthesises a suitable condition using the angelic values for that If condi-
tion with its condition synthesis algorithm. In cases where no abstract condition is
found, SPR avoids the need to attempt concrete transformations, thus increasing the
e�ciency of the search. Similarly, SPR uses abstract expressions within print state-
ments, allowing a suitable concrete expression to be synthesised from the observed,
correct print behaviour.

Unlike GenProg, SPR is unable to compose multiple-edit �xes, opting to focus on
single-edit patch generation instead. Long and Rinard [2015] state: “It is unclear
how to combine multiple transformations and still e�ciently explore the enlargened
space.”

Intentionally, SPR lacks a statement deletion operator, due to the previous �ndings
by Qi et al. [2015], showing that the majority of plausible, but incorrect patches
generated by GenProg were the result of deletion. Although this decision prevents
explicit functionality deletion—and thus repairs which require such deletion—it does
not prevent SPR from yielding implicit deletions, by replacing conditions with con-
tradictions and tautologies [Mechtaev et al., 2016]. Mechtaev et al. [2016] found
that 80% of the repairs generated by SPR for the libtiff bug scenarios involved
implicit functionality deletion (whereas only 21% of repairs generated by Angelix
were functionality-deleting).

44

2.2. SEARCH-BASED REPAIR

To assess the e�cacy of SPR, Long and Rinard [2015] evaluated it against 69 bugs
from the ManyBugs suite.3 Given the tendency for automatically generated re-
pairs to over�t the test suite, the authors themselves assessed the correctness of the
patches produced by SIR. Whilst any form of patch quality assessment is better than
none at all, using humans to evaluate correctness is fraught with potential biases,
and the possibility of false positives and negatives—all the more so when evaluating
one’s own patches against another system. A more robust solution—albeit far from
perfect—is to use a held-out set of manually or automatically generated whitebox
tests to independently verify the repairs.

Across the 69 bugs, SPR’s search space contained repairs for 19 of them, and for 11
of the 19, the �rst plausible repair that was presented by SPR was correct. By com-
parison, GenProg generated correct �xes for 2 of the 69 bugs [Qi et al., 2015].

In later work, Long and Rinard [2016] proposed a variant of SPR, known as Prophet,
wherein each candidate patch within the search space was ranked according to a
learned model of likely bug �xes. This model, learnt by applying machine learning
over a corpus of several hundred historical bug �xes, accepts as its input, a set of
syntactic features for the original and modi�ed versions of a line, each described
as a binary variable, and produces a scalar value, describing the likelihood that the
given �x is correct. To attain scores for each candidate �x, and thus rank them, the
resulting score from the model for a given �x is combined with its fault localisation
suspiciousness score, by computing their product. Long and Rinard [2016] found
that the use of Prophet reduced the average time taken to �nd a repair, and allowed
two more bugs to be �xed within the 12-hour repair window.

History-Driven Program Repair

To improve patch quality and search e�ciency, Le et al. [2016] introduce a novel
“history-driven” repair technique for for Java programs: HDRepair. Like, GenProg
and PAR, this technique employs genetic algorithms to sample and combine edits
into candidate patches. Whereas GenProg and PAR treat all edits equally, however,
history-driven repair exploits knowledge mined from version control repositories
to bias the search towards repairs that more closely resemble human-written re-
pairs.

To achieve this, 3000 historical bug �xes are �rst mined from GitHub from across
700 Java projects, before being transformed into a graph-based representation. To
produce this graph representation, an AST di�erence for each modi�ed source �le is
�rst generated using GumTree [Falleri et al., 2014], a state-of-the-art, open-source
source code di�erencing tool. Since the GumTree edit script still contains informa-
tion speci�c to particular variable names, rather than capturing an abstract type of
change (e.g., a change of method name), this script is transformed into a labelled,
directed graph, capable of abstractly representing the change and capturing its sur-
rounding context. Each edge within this graph {P,C} represents a modi�cation to

3“Bug scenarios” that were in fact feature additions were removed from consideration.

45

BACKGROUND

Figure 2.8: An example change graph produced during the o�ine, bug �x mining
stage of history-driven program repair [Le et al., 2016]. Here, the change graph
shows the name of a parameter being updated within the context of a method call.

a child node C within the context of its parent P . An example of such a change
graph is given in Figure 2.8.

Once each bug �x has been transformed into its corresponding abstract change
graph, the set of graphs is subject to a process of graph mining using gSpan [Yan
and Han, 2002], wherein the largest, most frequent bug �x patterns are mined. For
each mined pattern, all of its vertices, edges, and the supergraphs that contain that
pattern are recorded to disk, forming a historical bug �x database. Using this in-
formation, the number of supergraphs of a given pattern can be used to �nd its
frequency.

During the online phase of the search, candidate repairs are generated stochasti-
cally, using a similar process of generating repairs to GenProg and PAR, wherein a
single edit is added onto an existing patch at each mutation step. An outline of the
search algorithm employed by History-Driven Program Repair is given in Algorithm
4.

46

2.2. SEARCH-BASED REPAIR

Algorithm 4: The select function randomly selects a number of individuals from
a population, either uniformly or weighted by a given function. The tunable pa-
rameters are: PopSize (size of population), M (number of desired solutions), E
(size of the initial population), L (number of locations considered during mutation).
Sourced from [Le et al., 2016].
Input: BugProg: Buggy program
Input: FaultLocs: Fault locations
Input: NegTests: Initially failing test cases
Input: ops: Possible operators
Input: params: Tunable parameters PopSize,M,E,L
Output: A ranked list of possible solutions
editFreq(cand) begin

N ← |cand| ;
return

∑N−1
i=0 FixPar(candi)

N

end

mutate(cand) begin

locs← select(FaultLocs, L) ;
pool← ∅ ;
foreach f ∈ locs do

opf ←
⋃
op∈applies(ops,loc)instant(op,loc) ;

cand← cand+ select(opf , 1) ;
pool← pool ∪ {cand′} ;

end

return select(pool, 1, editFreq)
end

search() begin

Solutions← ∅ ;
Pop← {E empty patches} ;
while |Pop| < PopSize do

Pop← Pop ∪ mutate([]) ;
end

repeat

foreach c ∈ Pop do
if c /∈ Solutions then

if c passes NegTests then
Solutions← Solutions ∪ {c} ;

else

c← mutate(c) ;
end

end

end

until |Solutions| = m;
return Solutions

end

47

BACKGROUND

As with GenProg and PAR, a population composed of single-edit solutions is gener-
ated during the initialisation stage, before being supplemented with a given number
of empty patches. Unlike GenProg and PAR, there is no selection between individ-
uals; rather, each individual within the population is subject to mutation and carried
as-is into the next generation, without being subject to crossover. As a result, the
algorithm ignores the outcome of the test suite for a given solution—except in cases
where a repair is found—allowing it to terminate upon the �rst instance of failure,
as with RSRepair and AE. Instead, a form of selection is introduced into the process
of mutation, wherein several edits are generated and only a single is selected and
added to the patch, based upon its likeness to historical bug �xes within the mined
database.

This selection between edits uses stochastic universal sampling to pseudo-randomly
sample an edit based upon its corresponding frequency within the historical bug �x
database. Speci�cally, each candidate edit is assigned a score, according to Equation
2.4, based upon the mean frequency (within the database) of each of the edits in the
mutant patch that contains the edit under consideration.

score(patch) =

∑N−1
i=0 FixPar(patchi)

N
(2.4)

The rationale given by Le et al. [2016] for using the mean frequency of the mu-
tant patch—rather than the frequency of the singular edit—is that it allows the score
for low frequency edits to be dampened. This increases the likelihood of their se-
lection (although the distribution given by considering singular edit frequencies is
isotone).

Rather than terminating upon the discovery of a repair, like PAR and GenProg,
HDRepair continues to search until a speci�ed number of solutions have been found,
or a time limit has been reached. The user is then presented with each of the dis-
covered �xes, ranked and ordered according to their mean frequencies. Unlike all
other repair techniques, HDRepair does not validate its candidate repairs against
the previously passing test cases. Consequently, repairs reported by HDRepair may
introduce new bugs into the program. In addition to employing a novel search pro-
cedure, this repair technique also uses a combination of existing repair models and
mutation testing operators to construct repairs, detailed in Table 2.2.

Results taken from an evaluation of the technique on 90 bugs taken from 5 pro-
grams within the Defects4J dataset [Just et al., 2014] demonstrate that HDRepair
produces correct repairs for 23 bugs, compared to 4 and 1 �xed by PAR andGenProg
respectively. It is unclear whether o�-the-shelf versions of PAR and GenProg were
used; if so, then it is important to note that the de�nition of a repair is di�erent be-
tween these tools—PAR and GenProg require that a patch passes all of the test suite,
whereas HDRepair requires that it only pass the previously failing tests. Whilst
these results may suggest a higher e�ectiveness (i.e., HDRepair �xes more bugs),
they also increase the wall-clock time taken to �nd a repair.

48

2.2. SEARCH-BASED REPAIR

GenProg Mutation Operators

Insert Statement Insert a statement before or after a given state-
ment

Replace Statement Replaces a statement with another from the
program

Delete Statement Removes a statement from the program

Mutation Testing Operators

Insert Type Cast Cast an object to a compatible type
Delete Type Cast Remove a type cast from an object
Change Type Cast Replace a type cast with a compatible cast
Change In�x Expression Changes primitive operator within an in�x

expression
Boolean Negation Negates a boolean expression

PAR Mutation Operators

Replace Call Parameter Replaces a method call parameter with a com-
patible one

Replace Method Call Name/Invoker Replaces the name of a method call, or a
method-invoking expression with a compat-
ible name or expression.

Remove Condition Remove a boolean condition in an if-condition
Add Condition Add a boolean condition to an existing if-

condition

Table 2.2: A list of the repair actions within the repair model for History Driven
Program Repair, separated by their sources [Le et al., 2016].

Although those results are encouraging, the methodology used to perform the ex-
periments makes it di�cult to gauge whether the e�ectiveness of the technique
is bolstered by its use of historical bug �x information, or whether the results are
largely due to a larger repair model. Ideally, one would like to see the technique
compared to a near-identical variant, in which the selection procedure is replaced
by a random selection. Furthermore, the results for each technique were gathered
over a single run, failing to account for their stochastic nature; consequently, the
comparison may be somewhat unrepresentative of the average performance of the
techniques involved.

No comparison is given between the e�ectiveness of using the historical bug �x
database against the graphical model employed by Prophet. Although each of these
techniques operate on di�erent programming languages, their �x weighting com-
ponents are both usable within C. Ideally, then, one would like to see whether the
historical bug �x database performs any better than Prophet’s graphical model,
given the signi�cantly higher running costs associated with its memory and CPU
consumption.

49

BACKGROUND

2.3. Semantics-Based Repair

Instead of generating and evaluating concrete patches, semantics-based approaches
use symbolic execution to determine the intended semantics of the program, be-
fore using program synthesis to construct a patch based on that extracted semantic
information. By avoiding the need to compile and execute the test suite for each can-
didate patch, semantics-based approaches are often signi�cantly more e�cient than
their search-based counterparts. This speed typically comes at the cost of restricting
the set of bugs and programs to which repair might be applied, however.

In this section, we provide the reader with a brief review of several of the most
popular semantics-based approaches to program repair.

MintHint

As an alternative to fully automated program repair, Kaleeswaran et al. [2014] pro-
pose a semi-automated technique, MintHint, which provides the developer with
patch suggestions. By delegating the responsibility of patch validation to the devel-
oper, MintHint is able to avoid concerns of patch quality and over�tting—a major
challenge for test-based repair techniques (i.e., repair techniques that rely on test
suites as their oracles).

To identify candidate �x locations, MintHint uses Zoltar [Janssen et al., 2009] to
compute a ranked list of suspicious statements within the program, using the Ochiai
spectrum-based fault localisation metric. Like the majority of existing repair ap-
proaches, MintHint assumes that only a single statement within the program con-
tains a fault.

For each of the top k statements within this list, MintHint generates a state trans-

former f : a function that accepts each of the program states that reach the can-
didate statement F and computes the correct output for each of them. To ascer-
tain the correct output—with respect to the provided test suite—dynamic symbolic
execution is performed using KLEE [Cadar et al., 2008]. To simplify hint gener-
ation, all statements in the program are converted to the form x := e through
semantics-preserving program transformations. After applying this transformation,
MintHint computes a state transformer f for each suspicious statement F as fol-
lows:

• To capture the existing, correct semantics of F , MintHint records the ob-
served input/output states for each of the positive tests.

• To determine the intended semantics of the program over the negative test
cases, MintHint �rst transforms the LHS variable x to a symbolic one. Using
symbolic execution and constraint solving, MintHint �nds concrete values
of x that cause the program to yield the correct output for each of the negative
tests. Finally, the program is re-run using computed values of x, in place of

50

2.3. SEMANTICS-BASED REPAIR

Nature of hint Targeted fault

Insert Missing expression
Replace Incorrect operator, constant, variable, etc.
Remove Spurious expressions
Retain Filtering out non-faulty statements
Compound One of more occurrences of the above

Table 2.3: MintHint’s repair model, or hints, and the kinds of faults that each hint
is designed to address. Taken from [Kaleeswaran et al., 2014].

its RHS e, allowing its input/output states to be extracted, thus giving the
mapping f for the failing tests.

In some cases, the symbolic execution process may fail to determine values
for x, due to either time-out or an unsatis�able constraint. If, for all of the
negative tests, symbolic execution fails to generate values of x for some F
within a prede�ned time limit, F is removed from consideration for the re-
mainder of the repair process. Alternatively, if x is deemed to be unsatis�able
for all of the failing tests, then MintHint generates a “retain statement” hint
for that statement, indicating that the statement is irrelevant to the fault and
should be left unaltered.

Using the computed state transformer for a statement as its operational speci�cation,
MintHint exhaustively searches its repair space for expressions to serve as the ar-
guments for its hints at that statement. The possible forms of these hints are listed in
Table 2.3. This repair space is generated by iteratively constructing all possible ex-
pressions up to a pre-de�ned maximum length, using the in-scope variables at that
statement, according to a provided grammar, describing the syntax of the language.
Additionally, the set of sub-expressions within the RHS e are incorporated into the
search space, together with the RHS itself. By incorporating e and its constituent
sub-expressions, MintHint is able to determine whether those elements are likely
to be faulty, independent of the results of the fault localisation. Each expression
within the repair space of F is ranked according to its likelihood of occurring in the
RHS of the repaired form of F. To determine this likelihood, MintHint measures
the correlation between the outputs of a candidate expression and the correct val-
ues of the LHS, provided by f . Expressions that appear to be highly correlated with
the values of f are assumed to indicate possible repairs, whereas lowly correlated
expressions are assumed to be indicative of faulty expressions.

By incorporating e and its consituent sub-expressions into the repair space, MintHint
is able to operate e�ectively in the presence of poor fault localisation information.
Statements that are correct should exhibit a high degree of correlation between e
and the expected values of x. In such cases, MintHint will generate a “Retain” hint
for that statement.

After ranking the expressions within the search space of F by their likelihood of ap-

51

BACKGROUND

pearing in the �xed RHS, MintHint generates repair hints using these expressions,
as follows:

• Exhaustively searches the space of expressions at a given statement, and �lters
out expressions with likelihood values below a certain threshold.

• For each candidate expression, MintHint uses pattern matching to locate
matching expressions within the suspected statement. Based on the edit dis-
tance d between the candidate and matched expressions, MintHint suggests
a di�erent hint:

– If d ≤ k, where k is a tunable threshold (set to 2, by default), a hint is
generated wherein the matched expression is replaced by the candidate
expression.

– If d > k, an insertion hint is generated.

– If d = 0, the expression already exists within the statement,

MintHint also allows compound hints to be synthesised. Compound hints are gen-
erated by combining non-overlapping atomic hints.

To evaluate MintHint, Kaleeswaran et al. [2014] conducted a user study, in which
ten participants (all of whom were either professional developers, or graduate stu-
dents with prior industrial experience) were asked to debug and �x one of ten hand-
seeded bugs, containing a single fault, taken from small C programs in the Software
Infrastructure Repository. The time taken by the users without the tool was com-
pared to users equipped with the tool to assess its e�cacy. In an e�ort to reduce
the di�culty of the task, the authors used Zoltar to �nd the �ve most suspicious
lines within the program. The user was informed that the bug was contained on
one of these lines; the lines presented were reviewed to ensure that this was the
case.

Kaleeswaran et al. [2014] found that the time taken by the user to �nd a repair was
reduced from an average of 91 minutes (with 4 participants unable to complete the
task) to 29 minutes, when the tool was used (with all participants completing the
task).

Although these results look encouraging, we have identi�ed a number of potential
issues in the design and evaluation of the study. No raw timing data, specifying the
time taken by each user to complete the given task, is provided. Instead, this data is
aggregated by computing the mean. By computing the mean, rather than the more
statistically-robust median, the evaluation is prone to in�uence by outliers. The
paper also fails to conduct statistical hypothesis testing, to demonstrate a signi�cant
di�erence between the control and the treatment, and to measure the e�ect size. The
lack of statistics makes it di�cult to assess the true e�ectiveness of the tool.

A deeper concern lies in the design of the user study itself; the ten participants in
the control group were the same as those given the treatment. The order in which
the subject is given the control and the treatment may produce an unintended bias

52

2.3. SEMANTICS-BASED REPAIR

in the results. For the user study, participants were asked to �x a bug without using
the tool �rst, before then being asked to �x a bug using the tool. The paper makes
no mention of the steps, if any, to avoid introducing bias.

From a technical perspective, questions remain over whether the techniques pro-
posed by MintHint can be scaled to larger programs. For a number of bugs within
small programs taken from the Software Infrastructure Repository, containing fewer
than 20 KLOC, the symbolic execution phase timed out. The costs of applying the
technique to programs containing hundreds of thousands of lines of code are likely
to be several orders of magnitude higher.

In summary, MintHint transforms the exceptionally di�cult problem of generating
high-quality repairs into the signi�cantly easier problem of suggesting bug �xes. In
practice, there is no di�erence between the approach of hint generation tools and
repair tools—the only di�erence lies in the way such tools are treated. There is
nothing to prevent us from using GenProg, SPR, or any other repair technique as
a hint generation tool.

SemFix, DirectFix and Angelix

SemFix [Nguyen et al., 2013], DirectFix [Mechtaev et al., 2015] andAngelix [Mech-
taev et al., 2016] belong to the same family of semantics-based repair techniques.
All of these techniques leverage symbolic execution and component-based program
synthesis to craft provably minimal repairs to faulty program expressions. Below,
we summarise the abilities and limitations of these techniques:

• SemFix, the �rst of these techniques to be proposed, allows the repair process
to scale with the size of the program, through the use of controlled symbolic
execution, but is restricted to generating single-edit patches.

• DirectFix, the successor to SemFix, allows multiple-edit patches to be gen-
erated, but does so by restricting the technique to small programs. DirectFix
derives its ability to craft multiple-edit patches—and its associated limitations—
from describing the semantics of the entire program in a single logical formula.

• Angelix, the newest of the three techniques, combines the strengths of SemFix
and DirectFix by using lightweight angelic forests to describe the semantics
of the areas of the program under repair. By using angelic forests to encode
the necessary semantic information, Angelix is able to produce multiple-edit
patches without restriction on the size of the program—the cost of the tech-
nique scales with the size the patch, and not the program.

For the most part, the high-level approach employed by each of these techniques is
split into the same four stages:

1. Preprocessing: A series of semantics-preserving code transformations are ap-
plied to the program under repair to allow it to address a greater number
of bugs. These transformations wrap each unguarded statement in its own

53

BACKGROUND

if statement, allowing their execution to be controlled (e.g., x = y + 1; be-
comes if (1) x = y + 1;).

2. Fault Localisation: Like most search-based approaches, spectrum-based fault
localisation is used to narrow down the possible locations of the faults, and
to prioritise the e�orts of the repair process. Fault localisation is performed
at the level of expressions, rather than statements, since expressions are the
target of the repair model shared by these techniques.

3. Symbolic Execution: Once a set of suspicious expressions has been determined,
one (in the case of SemFix) or more (in case of Angelix) expressions are se-
lected as candidates for repair. Each of the selected expressions is then re-
placed with symbolic variables. Symbolic execution is then used to determine
whether there exists a program path through which a given test is passed;
SemFix and Angelix constrain this search to consider di�erent outcomes as-
sociated with the symbolic variables, rather than the inputs to the program.
This process is carried out for each test within the suite, until either a test is
failed, or all tests are passed. In the event that a set of paths are discovered
that result in success for each of the tests, a constraint solver is used to infer
concrete values (referred to as angelic values) for each of the symbolic vari-
ables. Additionally, the state of the program at each visit to these locations
is recorded as the angelic state. For Angelix, the sets of angelic values and
angelic states are combined together to form the angelic forest.

4. Repair Synthesis: Using the semantic information extracted during symbolic
execution, a provably minimal repair to the implicated expressions is con-
structed using a variation of component-based program synthesis [Jha et al.,
2010]. Each component is represented by a variable, constant, or a term over
components and supported operations (e.g., +, −, ∗), de�ned in the given
background theory. Through the use of soft and hard Partial MaxSMT clauses,
the solver �nds a patch that satis�es the synthesis speci�cation, provided by
the semantic information, and that is syntactically closest to the original pro-
gram. Underlying this decision is an assumption that smaller patches, closer
to the original, buggy program, are more likely to be correct, and easier to
maintain, than larger patches.

SemFix and DirectFix were evaluated on arti�cial bugs in small programs taken
from the Siemens and SIR datasets, and a small number of real-world bugs in small
programs from the Coreutils [Böhme and Roychoudhury, 2014] dataset [Mechtaev
et al., 2015; Nguyen et al., 2013]. SemFixwas found to repair more bugs thanGenProg
(48 vs. 16), and to do so in an average of 3.8 minutes, compared to the average of 6
minutes required by GenProg [Nguyen et al., 2013]. DirectFix was found to repair
a greater number of bugs than SemFix; 53% of those repairs were found to to be
equivalent to those by the programmer, compared to 17% for SemFix. In the evalu-
ation of DirectFix, for all scenarios longer than 135 lines of code, the fault local-
isation information was manually—and substantially—improved by restricting the
consideration of the tool to the single function known to contain the faults.

54

2.3. SEMANTICS-BASED REPAIR

Angelix was evaluated against GenProg, AE, and SPR on a modi�ed sub-set of
the ManyBugs dataset, containing manual improvements to some of its weak test
harnesses (i.e., those that only checked the exit status of the program). Due to limits
of the symbolic execution engine used by Angelix, the fbc, Python and lighttpd
subjects were omitted from the evaluation. Angelix was shown to �x 28 out of 82
bugs, compared to 31, 11 and 19 achieved by SPR, GenProg and AE, respectively.
Angelix was able to �x six bugs that were unsolved by other techniques, whereas
SPR exclusively �xed four bugs; none of the bugs �xed by AE or GenProg were
exclusive. On average, Angelix took 32 minutes to �nd a patch.

Although Angelix shows promise as a viable approach for constructing multiple-
edit patches, it also su�ers from a number of limitations, also shared by SemFix and
DirectFix. Part of these limitations are inherited from the limits of current sym-
bolic evaluation engines. Angelix is unable to generate patches involving �oating
point numbers, non-primitive types, or side-e�ects, nor is it able to introduce new
statements or variables into the program.

NOPOL

Xuan et al. [2017] propose NOPOL, a semantics-based repair technique, designed
to address a narrow class of defects in Java programs. This class of defects covers
faulty if-conditions, and missing if-conditions around individual statements.

To �x those bugs, NOPOL uses a form of angelic debugging, similar to that per-
formed by SemFix and SPR, to determine if there exists a set of branch outcomes
for a particular if-statement that would allow the program to pass its test suite. To
allow missing if-conditions to be repaired, NOPOL performs the same semantics-
preserving program transformations as Angelix, wherein (unguarded) statements
are wrapped in a trivial if-condition (e.g., x = 0; becomes if (true) x = 0;).
Once a set of branch outcomes has been determined, NOPOL synthesises a branch
condition from the in-scope variables, using its knowledge of the program state at
each branch evaluation, that yields those outcomes.

Due to the nature of its implementation, the category of defects that NOPOL can ac-
tually �x is smaller than intended, however. NOPOL is unable to record information
for branches that are visited more than once by the program. In contrast, SPR and
SemFix make no such assumption. Moreover, NOPOL assumes that the program
contains only a single faulty condition, preventing it from scaling to multiple-line
faults.

SearchRepair

[Ke et al., 2015] propose an automated repair technique driven by semantic code

search [Stolee et al., 2014]—a method for identifying code by its behaviour, rather
than its syntactic features. To compose repairs, SearchRepair searches through a

55

BACKGROUND

large, pre-computed database of code snippets—taken from existing programs—for
a single snippet which satis�es a partial speci�cation for the program. From a high-
level perspective, the approach taken by SearchRepair to construct repairs is as
follows:

1. A database of code snippets is constructed from a set of donor programs. To
capture its semantics, each snippet is encoded as a set of satisi�ability modulo
theory (SMT) constraints over its input-output behaviour.

2. Tarantula, a technique for spectrum-based fault localisation, used by a ma-
jority of repair approaches, is used to rank the suspiciousness of program
fragments, rather than lines or statements.

3. For each suspicious fragment, a lightweight pro�le of its desired input-output
behaviour—determined using symbolic execution [Cadar et al., 2008] over its
test suite—is generated, in the form of a set of SMT constraints.

4. Using the Z3 SMT constraint solver [de Moura and Bjørner, 2008], the database
of donor code is searched for snippets which satisfy the desired behaviour
of the faulty program fragment. Matching snippets are thereafter contex-
tualised, through a process of variable substitution, and transformed into a
patch, wherein the original fragment is replaced by the discovered snippet.

5. Finally, as with search-based methods, candidate patches are evaluated against
the test suite to determine whether they represent a repair.

SearchRepair sits between search-based techniques, which randomly generate mu-
tants and assess their correctness by evaluation against a test suite, and speci�cation-
based techniques, which use program synthesis to generate a repair that satis�es a
partial speci�cation.4

LikeGenProg and its variants, SearchRepair relies on the plastic-surgery hypothe-
sis to �nd redundant code within programs from which to craft its repairs. Whereas
GenProg operates on the level of statements, SearchRepair operates on more-
coarsely-grained entities, known as fragments. Fragments include the basic blocks
within if- and while-statements, the if- and while-statements themselves, and se-
quences of one to �ve statements. By operating at a higher level of granularity,
Ke et al. [2015] believe that SearchRepair is less susceptible to over�tting whilst
remaining su�ciently expressive. Ke et al. [2015] state:

Our core assumption is that a larger block of human-written code, such
as a method body, that �ts a given partial speci�cation is more likely to
satisfy the unwritten speci�cation than a randomly chosen set of edits
generated with respect to the same partial speci�cation.

Although results from the paper show that 97.3% of patches generated by SearchRepair
over the IntroClass benchmarks are correct—with respect to an independent test

4Note that patches generated by speci�cation-based techniques are only guaranteed to be correct
with respect to a partial speci�cation, and not necessarily to the complete, intended speci�cation of the
program. Therefore, such methods are equally as susceptible to over�tting as search-based techniques.

56

2.4. SPECIFICATION-BASED REPAIR

suite—compared to 68.7% for GenProg, Ke et al. [2015] do not explicitly validate this
hypothesis, and these results alone do not con�rm it. Whilst almost all patches gen-
erated by SearchRepair were deemed correct, SearchRepair also �xed the fewest
bugs, with respect to the original test suite.

Additionally, the benchmarks used consist of bugs in small programs, each contain-
ing fewer than 100 lines of code, and so questions remain over the generality of
the technique, and its e�ectiveness when applied to bugs in large-scale programs,
such as those in the ManyBugs dataset. Moreover, due to the limitations of KLEE—
the symbolic execution engine used to compute pro�les—SearchRepair is unable
to insert code containing loops, recursion, non-primitive types, side-e�ects, or I/O
operations (e.g., �le manipulation, database queries).

Despite su�ering from a number of limitations, SearchRepair presents a promising
approach to automated program repair by combining the strengths of search-based
methods with semantics-based techniques.

2.4. Speci�cation-Based Repair

Unlike search-based and semantics-based program repair, both of which rely on
user-provided test suites to establish correctness, speci�cation-based repair tech-
niques assume the existence of formal speci�cations. Due to this requirement, the
applicability of these approaches is far more limited; none of the datasets previ-
ously used to evaluated search-based or semantics-based repair approaches (e.g.,
SIR, ManyBugs, Coreutils) possess any such speci�cations. On the other hand,
speci�cation-based approaches are able to leverage these speci�cations to generate
higher quality patches (that are likely to satisfy them). Concerns are shifted from
the adequacy of the test suite, to the soundness and completeness of the speci�ca-
tions that are used. Like semantics-based repair, speci�cation-based approaches use
program synthesis techniques to generate patches.

Below, we brie�y discuss AutoFix-E, one of the few and foremost approaches to
speci�cation-based program repair.

AutoFix-E

AutoFix-E [Wei et al., 2010] leverages partial speci�cations, provided in the form
of contracts, to automatically repair faults in Ei�el classes. These contracts are
used to specify preconditions, postconditions and intermediary assertions over Eif-
fel classes.

Provided a defective Ei�el class, AutoFix-E attempts to expose and repair the un-
derlying bug, following the steps below:

57

BACKGROUND

1. Test Suite Generation: In contrast to almost all search-based and semantics-
based repair approaches, AutoFix-E generates a test suite automatically, rather
than relying on one provided by the programmer. AutoTest, an automated
test generation tool for Ei�el, is used to generate as large a test suite as pos-
sible within a �xed window of time, covering the defective class.

By evaluating the program under repair against this test suite, the tests are
partitioned into passing runs and failing runs (equivalent to positive and neg-

ative tests). A run is determined to be a failure if it results in a contract viola-
tion.

2. Object State: To aid in determining the source of the fault, AutoFix-E exam-
ines object state by observing the output of argument-less, boolean-valued
functions (referred to as boolean queries). Boolean queries are widely used in
Ei�el contracts as a means of concisely capturing the key properties of object
state. Together, the n boolean queries for a given class describe its 2n abstract
states. Although the resulting state space may seem intractable, a study of a
large Ei�el library, conducted by Wei et al. [2010], suggests that the majority
of Ei�el classes have 15 or fewer such queries.

Using the set of boolean queries for the class under repair, AutoFix-E uses
contract mining to discover implications between queries. For each mined
implication, AutoFix-E also generates three mutants of that implication: the
negation of its antecendent, consequent, and both. Together, the sets of boolean
queries and implications form the predicate set P ; this set describes a set of
simple facts about the class under repair, encoded as logical statements. To
improve the e�ciency of later stages in the repair process, the predicate set
is pruned, with the help of an automated theorem prover.

3. Fault Pro�ling: Using Daikon, a popular invariant mining tool, and a super-
set Π of the predicate set P , also containing the negation of each predicate,
AutoFix-E generates a pair of invariants for each executed program location
`. This pair, (I+

` , I
−
`), is comprised of the predicates I+

` ⊆ Π that hold for
all passing runs, and the predicates I−` ⊆ Π that hold for all failing runs.
Together, this sequence of pairs forms a fault pro�le, describing the possible
causes for the failed runs, in terms of abstract state.

4. Behaviour Model Generation: To serve as a source of ingredients for its repair
process, AutoFix-E mines a simple �nite-state behavioural model over all of
its passing runs, encoded as a �nite-state automaton. The states of this au-
tomation are labelled by the predicates that hold over that state. Transitions
are labelled with the name of a routine, and are used to describe a particular
input-output behaviour of a routine, in terms of abstract state; implicitly, each
transition describes a Hoare triple.

The resulting model is used byAutoFix-E to determine how to reach a desired
state (i.e., the intended state) from some current state (i.e., a faulty state). In
general, the model is neither sound nor complete, since it is inferred over a

58

2.4. SPECIFICATION-BASED REPAIR

(a)
snippet
old_stmt

(b)

if fail then
snippet

end

old_stmt

(c)

if not fail then
old_stmt

end

(d)

if fail then
snippet

else

old_stmt
end

Figure 2.9: The �x schemas implemented in AutoFix-E [Wei et al., 2010]. snippet
is replaced with a sequence of routine calls that move the program from a faulty
state into a desired state. old_stmt may either be a single statement, or the block to
which a statement belongs. fail is used to monitor the conditions under which the
fault manifests, and not to a�ect the appropriate action.

�nite set of executions. In practice, the model appears to be su�ciently precise
for the purposes of �nding a repair.

5. Fix Generation: Beginning at the location where the fault occurred and it-
erating backwards, AutoFix-E uses its fault pro�le and behaviour model to
generate a set of candidate repairs. At each location, AutoFix-E �nds all pos-
sible instantiations of the four repair schemas within its model, outlined in
Figure 2.9. Each of these candidate repairs uses the fault pro�le to move the
program from a possibly faulty state to a possibly correct state. To achieve this
change in state, AutoFix-E uses its behavioural model to �nds the sequence
of routine calls that results in the desired post-condition.

A special �x schema is also introduced for repairing linear assertion violations
(e.g., count ≥ 0).

6. Fix Validation: Once a set of candidate repairs has been generated, AutoFix-E
evaluates them, to determine the set of valid repairs (i.e., those which pass all
of the tests). Finally, AutoFix-E uses a series of metrics to rank the valid
repairs according to some proxy to quality. These metrics measure the size of
the snippet, the distance in state, the number of old statements captured by
the �x schema, and the number of branches required to reach old_stmt from
the point of injection of the instantiated �x schema.

To evaluate AutoFix-E, Wei et al. [2010] ran it on a dataset of 42 faults detected
by AutoTest in 10 data structure classes taken from popular, open-source Ei�el
libraries. AutoFix-E was able to repair 16 of these faults. To assess the quality
of AutoFix-E’s patches, they manually inspected the top �ve patches reported for
each bug to determine if the patch �xed the underlying bug without introducing a
new defect. 13 of the 16 bugs �xed by AutoFix-E were found to satisfy this crite-
rion.

59

BACKGROUND

2.5. Related Techniques

To conclude our review of the relevant literature, in this section we brie�y discuss
a number of techniques loosely related to general-purpose program repair:

• Re�ective Grammatical Evolution: [Timperley, 2013; Timperley and Step-
ney, 2014] incorporate concepts from failure-obliviousness into genetic pro-
gramming. After using computational re�ection to create a failure-oblivious
dialect of Ruby, the authors demonstrate a higher success rate and e�ciency—
measured by candidate evaluations—when programs are evolved with these
measures enabled. These results suggest that allowing the program to persist
in the presence of errors, through the use of such measures, may smoothen
the �tness landscape and reduce the di�culty of the search.

• Data Structure Repair: [Demsky and Rinard, 2003, 2005] present techniques
for automatically recovering from data structure corruption errors, at run-
time. Repair is achieved by enforcing a data structure consistency speci�-
cation, which may be manually provided by the developer, or automatically
inferred from correct program executions, using tools such as Daikon.

• Integer Bug Fixing: [Coker and Ha�z, 2013] propose a set of three program
transformations for repairing all instances of integer bug within C programs:

1. Add Integer Cast: adds explicit casts to disambiguate integer usage, and
to address signedness and widthness problems.

2. Replace Arithmetic Operator: replaces arithmetic operations with safe
equivalents, which detect over�ows and under�ows at runtime.

3. Change Integer Type: modi�es types of integers to avoid signedness and
widthness problems.

Together, these three transformations �xed all 7,147 programs within NIST’s
SAMATE dataset [Black, 2007], covering over 15 million lines of code. Un-
like general-purpose repair techniques, Coker and Ha�z’s program transfor-
mations produce sound and complete repairs for a restricted class of defects,
forgoing the need for test suite evalution or symbolic execution. Although
these transformations prevent integer bugs from manifesting, they do so by
ensuring safe behaviour, rather than �nding particular unsafe instances of in-
teger usage and patching the source code directly, thus avoiding the need for
potentially expensive instrumentation.

• Bolt and Jolt: Bolt [Kling et al., 2012] and Jolt [Carbin et al., 2011] are tech-
niques for monitoring the execution of a program, detecting whether an in�-
nite loop occurs, and if so, allowing the loop to be executed or the program to
be terminated, at the request of the user. Whereas Jolt requires source code in-
strumentation to inject monitoring code, Bolt obviates this need through on-
demand dynamic binary instrumentation; the (unstripped) binaries remain

60

2.5. RELATED TECHNIQUES

unmodi�ed until the user attaches Bolt to the application.

To detect the occurrence of (some) in�nite loops, both techniques monitor
the state of the program upon entry to the loop. If upon the next iteration the
current state is the same as the previous state, an in�nite loop is detected and
the user is given the option to escape the loop or to terminate the program.

Across eight in�nite loops in �ve small but real programs (grep, ctags, indent,
ping, look), Jolt was able to detect an in�nite loop in seven cases [Carbin et al.,
2011]. Importantly, in each case, the program was allowed to continue exe-
cuting, producing a more useful output than simply terminating the program
[Carbin et al., 2011; Kling et al., 2012].

• CodePhage: Instead of addressing bugs via source code modi�cation, CodePhage
[Sidiroglou-Douskos et al., 2015] attempts to �x bugs by automatically iden-
tifying correct code in foreign, donor applications, and transferring that code
into the faulty program. CodePhage allows programs to be repaired with-
out the source code of either the program under repair or the source code
of the donor applications, by operating at the binary level. In its evaluation,
CodePhagewas able to successfully repair �ve out of ten security bugs across
seven di�erent programs.

• ClearView: ClearView [Perkins et al., 2009] uses Daikon to infer likely
invariants for a given system, based on data collected from several training
executions. Prior to deployment, ClearView uses binary instrumentation to
inject monitoring code into the program. Two of these monitors, HeapGuard
andDetermina Memory Firewall, check for out-of-bounds memory accesses,
and illegal control �ow transfer errors, respectively. A third monitor, Shadow Stack,
allows invariant violations along the call stack to be recorded. In the event
that a monitor reports erroneous behaviour at run-time, ClearView attempts
to generate a patch that restores violated invariants and satis�es the monitor.
The generated patches re-establish the inferred invariants by altering control
�ow, register values, and/or values of memory locations.

To evaluate ClearView, Perkins et al. [2009] conducted a Red Team exercise,
wherein members of the Red Team were asked to perform attacks on a pro-
gram protected by ClearView, using exploits discovered on the unprotected
version of the program. Firefox, a popular open-source web browser, was
used as the target application for the exercise. The external Red Team was
able to generate ten code-injection exploits in the target application. When
ClearView was used, all of these attacks were detected by its monitors, and
thus prevented. In seven out of ten cases, ClearView generated a patch that
allowed the program to survive the attack and to safely resume its execution.

• LeakFix: LeakFix [Gao et al., 2015] uses a series of program analyses to lo-
cate and repair (a sub-set of) memory leaks in C programs. Identi�ed leaks
are patched by inserting deallocation statements at appropriate points in the
program. The resulting patches are guaranteed to not interrupt normal pro-

61

BACKGROUND

gram execution. On an evaluation of 15 programs, comprising 522 KLOC, each
containing multiple leaks, LeakFix generated patches for 28% of the leaks.
LeakFix exempli�es an alternative approach to automated program repair:
tackling speci�c defect classes with high quality and accuracy. This approach
is an appealing one, but in practice, it is di�cult to cleanly assign bugs to any
one particular defect class.

• Genetic Improvement: Search-based program repair can be viewed as part
of the wider �eld of Genetic Improvement (GI) [Langdon, 2015], which seeks
to apply machine learning and search techniques to improving existing pro-
grams, more generally. In contrast to Genetic Programming, which typically
attempts to evolve a program from scratch, GI uses existing code as its seed.
In addition to program repair, GI has been used to automatically improve run-
time performance, reduce power consumption, port functionality, and more.

2.6. Concluding Remarks

In this chapter, we conducted a review of the majority of existing program re-
pair techniques. Below, we summarise each of the three main approaches to re-
pair:

• Semantics-based approaches, such as Angelix [Mechtaev et al., 2016], have
been shown to be more e�cient than search-based approaches and to success-
fully produce multi-line patches. The bugs and programs to which semantics-
based repair can be applied is limited, however. Due to limitations in its under-
lying techniques, namely those inherited from symbolic execution, semantics-
based approaches are unable to repair bugs involving side-e�ects, iteration,
recursion, non-primitive data types, and more.

• Speci�cation-based repair has demonstrated promising results, speci�cally
AutoFix-E [Wei et al., 2010], but its reliance on formal speci�cations pre-
vents it from being applied to the majority of bugs. Nonetheless, it may be
possible to use contracts to guide search-based repair towards a repair, rather
than to require them. The information provided by contracts could be inte-
grated into a richer �tness function, similar to the one introduced by Arcuri
and Yao [2008].

Alternatively, speci�cation mining [Ernst et al., 2007] may be used to auto-
matically infer partial speci�cations. Fast et al. [2010] attempt to realise this
with their predicate-based �tness function (described in Section 6.1. However,
their approach requires knowledge of at least one patch a priori, preventing
it from being used in practice. B. Le et al. [2016] use mined speci�cations
to improve the accuracy of function-level fault localisation (see Section 4.1.4
for more details). Additionally, it may be possible to use the degree to which

62

2.6. CONCLUDING REMARKS

a potential solution conforms to an inferred speci�cation as a proxy to the
quality of a solution (i.e., whether the solution destroys existing functionality
or over�ts to the test suite). To our knowledge, no studies have explored a
possible link between speci�cation conformance and patch quality.

• Search-based repair is the only approach that neither requires formal speci-
�cations nor has any limitations on the bugs it can �x. GenProg, the sem-
inal approach to search-based repair, is one of few search-based techniques
capable of generating multiple-edit patches—PAR and HDRepair, the other
approaches capable of multiple-edit repair, share the same underlying ge-
netic algorithm. Despite this capability, almost all patches that were gener-
ated by GenProg in previous studies were reduced to a single edit [Le Goues
et al., 2012a; Qi et al., 2015]. Techniques such as PAR, AE, and SPR sacri-
�ce the ability to generate multiple-edit patches in exchange for signi�cant
e�ciency gains. It is unlikely that the algorithms used by these techniques
(random search, exhaustive search and value search) can be scaled to generat-
ing multiple-edit patches, owing to the combinatorial explosion of the search
space. To tackle the problem of multiple-edit repair, new active search al-
gorithms are needed, capable of identifying and exploiting partial �xes, and
localising bugs over the course of the search.

63

BACKGROUND

64

CHAPTER 3

Tools and Techniques

Research in automatic program repair is typically evaluated by applying a new tech-
nique to a set of real-world bugs, and comparing the results to those produced by
prior techniques. Such an evaluation ideally involves a set of reproducible real-
world defects. Open-source software repositories provide a plentiful source of such
bugs, but accurately reproducing them reliably can prove challenging. Program
behaviour is often dependent upon the particular con�guration of its host’s envi-
ronment, such as the versions of particular libraries; many bugs only manifest un-
der certain con�gurations. Additionally, because most program repair techniques
involve evaluating candidate patches that may apply arbitrary changes to the pro-
gram under repair, experiments must be appropriately sandboxed to ensure system
safety and test idempotency.

What is needed, therefore, is both a dataset of bugs, and a platform for interacting
with them that ensures reproducibility and safety. The former is provided by bench-
marks such as ManyBugs [Le Goues et al., 2015], Defects4J [Just et al., 2014] and the
Software Infrastructure Repository (SIR) [Do et al., 2005]. For Java bugs, Defects4J
provides both a dataset of bugs, and a platform for executing them, implicitly sup-
plied by the Java Virtual Machine. For C bugs, this platform is either provided in the
form of a monolithic virtual machine (VM) [Le Goues et al., 2015; Long and Rinard,
2015; Qi et al., 2015], shared by multiple bugs within the same dataset, or, in some
cases, not provided at all [Kim et al., 2013].

Although the use of a VM as an execution platform provides reproducibility and
safety, it does so at the cost of performance and extensibility. Running the experi-
ment within a VM incurs the signi�cant performance penalties associated with the
overheads of virtualisation. Using a single VM to host both the bug scenario and
the repair tool limits its future usage. Newer techniques may be unusable within
the VM due to library incompatibilities, leading to the need to perform unsound
modi�cations to VM, which compromises its reproducibility.

Motivated by these problems and the issues of repair quality, we present RepairBox,
a platform for safely conducting controlled, reproducible program repair experi-
ments, with minimal compromise to performance. RepairBox operates by isolating
individual bug scenarios and repair tools into separate, minimal Docker1 containers
that can be easily inspected and extended. By packaging bug scenarios as contain-
ers, RepairBox attains close to bare metal performance, an important trait when
performing a large number of repeats of computationally-intensive program repair
experiments.

1https://www.docker.com. [Accessed April, 2017].

65

https://www.docker.com

TOOLS AND TECHNIQUES

A summary of the contributions of this chapter is given below:

• Identi�ed undiscovered weaknesses in a number of publicly available APR
benchmarks previously used to evaluate the performance of existing tech-
niques.

• Developed a tool, Pythia, to automatically improve the reliability of existing
test suites, within the context of APR; ensures all passing tests meet a minimal
set of quality requirements.

• Proposed a novel, e�cient technique, RepairBox, for conducting controlled
experiments into APR, together with a set of accompanying open-source tools.

• Collated and edited over 400 bug scenarios for C programs from a number of
existing sources, including ManyBugs, GenProg’s TSE benchmarks, and the
Software Infrastructure Repository.

The rest of the chapter is structured as follows: In Section 3.1, we review a collec-
tion of publicly available datasets of bugs, used to conduct APR experiments. In
Section 3.2, we discuss the problem of repair quality and its importance to empirical
studies of APR, before presenting Pythia, a tool to avoid this problem. In Section
3.3, we review existing approaches to reproducibility within APR before proposing
RepairBox, a high-performance, controlled platform for conducting APR experi-
ments. Finally, in Section 3.4, we put forward an e�cient and robust methodology
for conducting APR experiments, based on these tools, which is used for the remain-
der of this thesis.

3.1. Bug Scenarios

In this section, we �rst identify and review a number of publicly-available datasets of
bug scenarios, used to conduct empirical studies of program repair. We then discuss
some of the current challenges involved in performing such studies.

• GenProg ICSE 2009, GECCO 2010, TSE 2012: each of these sets of bug
scenarios was used to conduct early experiments on GenProg [Fast et al.,
2010; Le Goues et al., 2012b; Weimer et al., 2009]. Across these three sets, 20
bugs, each from di�erent programs, are covered. Of these 20 bugs, two are
found in arti�cial programs, consisting of fewer than 100 lines of code (gcd,
zune). 17 of the remaining 18 bugs are sourced from genuine bugs in large,
open-source projects (many taken from the results of Miller’s work on fuzz
testing [Miller et al., 1990], with the other bug (atris) being sourced from a
small game created by one of the authors of the paper.

Although the majority of these scenarios represent genuine bugs in large
projects, each uses a very small, arti�cial test suite, hand-written by the au-
thors. Each of these test suites contains fewer than 21 tests, designed to solely

66

3.1. BUG SCENARIOS

expose the bug, rather than thoroughly test the functionality of the program.
This behaviour allows destructive changes to be silently introduced into the
program. Whilst the test suites for these bugs are unrepresentative of stan-
dard test suites, their small sizes, together with the relatively short compila-
tion times for most of their programs,2 makes them ideal for high-cost, non-
deterministic experiments, where large numbers of repeats are required to
perform statistical hypothesis testing (e.g., to demonstrate a di�erence in per-
formance between two search algorithms).

• ManyBugs: to validate the e�ectiveness of GenProg on a set of bug scenarios
more representative of a real-world environment, the ManyBugs [Le Goues
et al., 2015] benchmarks contain 185 bug scenarios across 9 large, open-source
programs, where each employs a genuine test suite. Since real test suites are
provided with each bug, these benchmarks are appropriate for gauging and
comparing the overall e�ectiveness of APR approaches in the wild.

Since real test suites are used in each of these bug scenarios, they tend to be
several orders of magnitude larger than the arti�cial test suites found in the
earlier GenProg datasets. For instance, each of the PHP bug scenarios con-
tains around 8000 tests. As such, performing multiple runs of a given algo-
rithm on one of these scenarios to achieve statistical signi�cance can become
particularly expensive, requiring (tens of) thousands of CPU hours.

• IntroClass: Whilst ManyBugs and the earlier GenProg benchmarks are al-
most exclusively made up of large, open-source projects, consisting of mil-
lions of lines of code, the IntroClass [Le Goues et al., 2015] bug scenarios
provide an invaluable set of real-world bugs from small programs, consisting
of fewer than 100 lines of code, taken from students’ laboratory assignments.
In total, this dataset contains 998 bugs. Each bug is accompanied by a pair of
independent test suites containing 95 test cases in total, one of which the user
could use during the development of their solutions; the other may be used
to validate solutions, and to reduce the likelihood of over�tting. Additionally,
an oracle program is provided for each of the six assignments.

The small-size and low complexity of this set of benchmarks make it partic-
ularly well suited to studies involving a large number of bug scenarios, or
those in which certain levels of statistical signi�cance must be achieved. Ad-
ditionally, these bugs provide insight into the ability of APR techniques to
generalise to smaller programs, written by novice developers. This particular
trait may also be useful in assessing the e�ectiveness of plastic surgery-driven
approaches for small code bases.

• Defects4J: Defects4J [Just et al., 2014] provides a database of high quality
Java bug scenarios, designed for studies on software quality and testing. This
database covers 395 real-world bugs across 6 open-source projects.

2For php and imagemagick, using the provided compilation scripts could result in compilation
times taking as long as 8 minutes.

67

TOOLS AND TECHNIQUES

Another source of bugs within C programs, albeit one that has yet to be used by
the APR community, is provided by Software Infrastructure Repository [Do et al.,
2005]. SIR contains a collection of thousands of manually seeded bugs across 85
small to medium-sized programs (1 to 100 KLOC), written in C, C++, C#, and Java.
Each program comes with a series of manually engineered test suites, designed to
test the program at various levels of coverage.

Although arti�cial in the nature of its tests and bugs, the SIR o�ers a rich and plenti-
ful source of bugs, suitable for conducting studies on large numbers of medium-sized
programs.

The Siemens benchmarks [Hutchins et al., 1994] also provide a source of synthetic
bugs within C programs. In comparison to the bugs within the SIR, the Siemens
bugs span between 100 and 800 lines of code. Each bug scenario is accompanied by
a test suite containing thousands of tests, providing a level of coverage rarely seen
in real-world programs.

Importantly, while these datasets provide a plentiful source of bug scenarios, none
provides an execution platform in which to reproduce these bugs, with the exception
of Defects4J; Defects4J implicitly provides such a platform in the form of the Java
Virtual Machine. For programs written in compiled languages such as C, this lack
remains an important and unsolved problem.

3.2. Pythia

In this section, we look at the problems that inadequate test suites cause when per-
forming APR experiments, before introducing a lightweight, open-source tool to
address the problem, and to improve our con�dence in the results of APR experi-
ments.

Motivation

Recent �ndings [Qi et al., 2015; Smith et al., 2015] have demonstrated how inad-
equate test suites can lead to (unintentionally) misleading results and claims re-
garding the e�ectiveness of repair techniques. The majority of test suites provided
within publicly-available automated repair benchmarks (for C) have been shown to
su�er from serious problems of inadequacy.

Qi et al. [2015] found that previously published results for GenProg and AE on
the ManyBugs suite, wherein 55 of 105 bugs are solved, are mostly the result of
over�tting. Following a manual inspection of the patches produced by GenProg
and AE, they observe that only 2 of the 55 solved bugs yielded correct patches.
Upon closer examination of the ManyBugs test suite, they discovered that many of
the tests were failing to compare the output of the program against its expected

68

3.2. PYTHIA

output. In some cases, the only requirement of the test was that the program should
exit with a status of zero, allowing trivial patches such as exit(0); to be quickly
discovered and accepted.

Motivated by those �ndings, we subjected the ManyBugs scenarios to further scrutiny,
discovering a di�erent class of weakness within certain test suites in the process.
Speci�cally, for programs such as libtiff and gzip, the accompanying test har-
nesses neither check for expected side e�ects on the �lesystem, such as the presence
(or absence) of a particular �le (e.g., file should be replaced by file.z), nor do
they check the state of particular �les. We also examined the GenProg TSE 2012
bug scenarios, and found that the majority of tests also failed to validate on any
other criteria than the exit status of the program. After manually modifying each of
the test suites to compare their outputs against an expected output, GenProg (and
AE) failed to yield a solution, where previously they did. 3

Such weaknesses compromise the validity of the conclusions that are drawn during
APR experiments, and thus make performing experiments exceptionally challeng-
ing with such test suites. To reason about the e�ectiveness of APR approaches—and
avoid potentially misleading results—one must introduce further rigour to the test
suites that are used. No existing (publicly available) benchmarks for C programs
exist that are free from such weaknesses.

Existing Solutions

To tackle this problem, there are a number of existing techniques which one may
use. We critique each of these techniques below.

Manual Extension and Modi�cation

The simplest solution to the problem is to manually add more test cases to each of
the test suites that are used within the experiment. However, doing so risks losing
the real-world relevance of the results as the test suites become more arti�cial and
less realistic.

One may argue that the user of an automated repair technique (in practice) could be
expected to supply these additional test cases. In cases where bugs are less trivial,
and the user is unable to fully comprehend them, such an assumption may prove
impractical. Furthermore, such an approach would require a signi�cant investment
of time to carefully craft a higher-quality test suite for each problem.

Similarly, one may attempt to address the problem at its root by manually addressing
each of the weaknesses in the test suites, thereby reducing the number of false pos-
itive results. By taking such measures, however, one’s results become predicated on

3For some bug scenarios, this was not possible since the program failed to produce any output when
run on a 64-bit variant of Fedora 24. In these cases, the program appeared to have no side-e�ects on
either the �le system, the standard output, or the standard error.

69

TOOLS AND TECHNIQUES

the assumption that the test suite is of a high quality—an assumption that often fails
to hold in the real-world, as exempli�ed by the weaknesses within the ManyBugs
benchmarks (e.g., PHP, Libti�, gzip). As with manually extending the test suite, this
approach also requires a signi�cant investment of time as (thousands of) existing
test suites need to be analysed and adjusted.

Automatic Extension

Alternatively, one may use the developer-provided patch for the bug as an oracle,
allowing automated test generation [Cadar et al., 2008] to be used to supplement the
test suite with more positive and negative tests. As a simple, albeit limited criterion
for the adequacy of a repair, one may use test case generation to increase statement
coverage.

In practice, aiming for complete branch, statement, or MC/DC coverage across the
test suite is likely to prove intractable for all but the smallest and most arti�cial
of problems. Even if one were to relax the coverage criterion to full coverage at
the statement level (within a particular set of �les), the resulting test suite may still
prove too large as the size of the program grows. However, one may use test suite
prioritisation and sampling to reduce the cost of this extended test suite.

For the purposes of assessing the potential e�ectiveness of automated repair tech-
niques within the real-world, where complete coverage (at any level) is scarce, aug-
menting the test suite in any way may produce overly optimistic results. In the
general case, we believe that ideal, representative bug scenarios used within APR
experiments should place no assumptions on the user extending the original test
suite of the program, whether manually or automatically.

Pythia

To address the problem of inadequate test suites, without the need for manual in-
tervention, we introduce an open-source, automated tool for improving the qual-
ity of experiments, Pythia.4 Pythia takes a test suite manifest �le (provided in a
human-readable JSON format), together with an oracle program (i.e., the human-
repaired form of the program), and generates an oracle �le, describing the expected
behaviour of the program for each test within the manifest. This process is illus-
trated in Figure 3.1. Pythia may be used to improve the detection and automated
repair of regression faults in real-world programs by using an existing version of
the program.

Once the oracle �le has been generated, all tests (when performed using Pythia)
are guaranteed to meet three quality requirements:

4The name “Pythia” comes from the name of the mythical Oracle at Delphi (https://en.
wikipedia.org/wiki/Pythia). Pythia is available to download at: https://github.com/
ChrisTimperley/Pythia.

70

https://en.wikipedia.org/wiki/Pythia
https://en.wikipedia.org/wiki/Pythia
https://github.com/ChrisTimperley/Pythia
https://github.com/ChrisTimperley/Pythia

3.2. PYTHIA

Figure 3.1: An overview of the inputs and outputs of Pythia’s oracle generation
process.

1. Checking of standard output: the standard output of the program should match
that of the oracle.

2. Checking of standard error: the standard error of the program should match
that of the oracle.

3. Checking of exit code: the program should exit with the same code as the ora-
cle.

4. Checking of �le system: the program should leave the relevant areas of the �le
system in the same state as the oracle (i.e., the content, presence, and absence
of �les are checked).

Rather than describing tests and their expected outputs within the same �le, as is the
typical approach within the ManyBugs and early GenProg benchmark sets, Pythia
uses the description of a test to create a (faux) isolated environment for its execution
(known as a sandbox), before executing its associated shell command within that
sandbox and recording its various behaviours. After capturing the behaviour of
a test execution, those behaviours are compared against those given in the oracle
�le—if the program exhibits all of the same behaviours, it passes the test; otherwise,
it fails.

Sandbox Environment

Prior to the execution of each test, an isolated environment, or sandbox, is created for
the execution. By reading the description of a test from its corresponding manifest
�le, Pythia copies the �les relevant to this test into the sandbox, ensuring a minimal,
working environment for the execution. In practice, sandboxes are implemented as
temporary directories that are disposed of after the execution.

71

TOOLS AND TECHNIQUES

$./gzip ../inputs/testdir/file26 -c

Figure 3.2: In this example, taken from the gzip object within the SIR, the test suite
attempts to destructively compress a given �le, deleting the original version of the
�le and replacing it with its zipped form.

[

...,

{

"description": "Compresses a file at a given location",

"command": "<<PROGRAM>> -c ’<<SANDBOX>>/foo’",

"sandbox": {

"foo": "inputs/example.txt",

"bar": "inputs/example2.txt"

}

},

...

]

Figure 3.3: An example test case description within a Pythia test manifest �le. Each
test case is described by its corresponding shell command, the contents of its sand-
box directory, and an optional human-readable description.

Pythia includes this feature to avoid the side-e�ects of certain test executions on
the �le system. One example of where this behaviour is essential, amongst several,
can be found in the gzip object from the Software Infrastructure Repository. An
exemplar test within the original test suite is given in Figure 3.2. When one attempts
to run the test a second time, the oracle program will produce a di�erent result, as
the input �le to the test was destroyed during the initial invocation. By copying the
necessary �les to the sandbox, rather than using their original versions on the �le
system, such side-e�ects can be avoided.

Test Manifest File Format

Test manifest �les within Pythia are described using a JSON array of objects, where
each object describes a single test case by a shell command, the contents of its sand-
box, and an optional human-readable description of the test case (useful for debug-
ging). An example test case description within a manifest �le is given in Figure
3.3.

To ensure the program behaves appropriately in all environments, two special vari-
ables may be used in the shell command for the test case: <<PROGRAM>>, which spec-
i�es the absolute path to the program executable, and <<SANDBOX>>, which gives
the absolute path of the sandbox for the particular execution. Prior to execution,
Pythia substitutes these special variables, replacing them with their appropriate

72

3.2. PYTHIA

[

...,

{

"retval": 0,

"time": 1.432,

"out": "zipped f to f.z",

"err": "",

"sandbox": {

"f.z": "cf23df2207d99a74fbe169e3eba035e633b65d94"

}

},

...

]

Figure 3.4: An entry in an example Pythia oracle �le, describing the expected be-
haviour of a test case from the corresponding manifest �le.

values.

The contents of the sandbox for each test case are described using a dictionary,
where each entry describes a �le that should be copied into the sandbox. The value
(i.e., right-hand side) of each entry speci�es the location of the �le that should be
copied to the sandbox (the path must be either absolute, or relative to the location of
the manifest �le). The key for each entry (i.e., left-hand side), speci�es the path that
the �le should be copied to, relative to the root of the sandbox directory. Note that
no distinction is made between �les and directories when copying; when a directory
is speci�ed by the value of a sandbox entry, that directory will be copied recursively
to a directory with the name given by the key of that entry.

Oracle File Format

Pythia uses oracle �les to describe the expected behaviour of each test within a
corresponding test suite. As with the test manifest, oracle �les are encoded as a
JSON array of objects, where the nth object describes the intended behaviour for
the nth entry within its associated manifest. Each object speci�es the expected exit
code, standard output, standard error, the state of the sandbox after execution, and
the time taken to reach completion.

An example oracle �le entry is given in Figure 3.4. The retval, out and err prop-
erties record the exit code and the state of the standard output and standard error
respectively. The resulting state of the sandbox is stored by computing a SHA1 hash
of each �le therein, recursively. The contents of each �le may be just as e�ectively
described using a hash, rather than its raw contents, since the state is only used for
comparison. By recording the state in such a manner, Pythia is able to check for
the presence and absence of �les within the sandbox, and to ensure the correctness

73

TOOLS AND TECHNIQUES

of their contents.

The time property speci�es the number of seconds taken for the test to �nish its
execution. Pythia uses this information to automatically set appropriate time lim-
its for each test. Speci�cally, Pythia scales this value using the formula given in
Equation 3.1:

t′ = P ·G · t+ ∆ (3.1)

where t′ is the calculated time limit for a given test, t is the time taken by the oracle
to �nish that test, ∆ is an o�set, and P and G are platform and generic scaling
factors. ∆ and G are used to control for variance in execution time. P is used
to take the expected execution time for one machine, and to apply it to another;
this term is used when the oracle is built on a faster machine than the one used to
conduct repair.

By assigning individual time limits to each test, rather than a single time limit for
all tests—as is the current standard—Pythia signi�cantly reduces the time taken to
evaluate the entire test suite for worst-case repairs.

Limitations

Although Pythia addresses certain kinds of test suite weaknesses, allowing prac-
tioners to gain a higher degree of con�dence in the results of their experiments, it
is not without its limitations and trade-o�s:

• Non-determinism: in cases where some aspect of the behaviour of a par-
ticular test case is non-deterministic, correct results may fail to agree with
the oracle, resulting in false negatives. To our knowledge, this problem does
not a�ect any of the benchmarks within the benchmark sets discussed earlier;
the SIR benchmarks, in particular, speci�cally go about removing sources of
non-determinism from the program.

• Inadequate test coverage: although Pythia avoids certain, common degen-
erate solutions from being accepted (e.g., early program exits) it is unable to
prevent false positives stemming from a lack of coverage (e.g., a faulty If con-
dition that is only covered once may be replaced by a tautology or a fallacy).

• Ine�cient copying of �les: in cases where the program does not write to its
input �les, copying them to the sandbox is a waste of resources. However, in
the general case, variants of the program may have the ability to write to that
�le, and so to avoid side-e�ects, a copy of that �le must be made. Alternatively,
one could solve the problem by ensuring the �le is read-only and creating a
symbolic link within the sandbox.

• Ignorance of �le attributes: properties of �les, such as their permissions,
ownership, and associated dates are not recorded by Pythia. In general, we

74

3.3. REPAIRBOX

observe few instances where such attributes are relevant to testing. Moreover,
adding certain of these properties may introduce non-determinism.

• Modi�cation of �les outside of sandbox: certain tests may involve �les
outside of the sandbox (e.g., htpasswd). To protect these �les from being in-
fected and left in an altered state following a test execution, one must take
further steps to isolate the test execution. A particularly expensive option
would be to launch a separate container (discussed further in Section 3.3) for
each execution. An alternative solution—albeit complex—would be to (option-
ally) use the sandbox as a chroot jail for each test execution, guaranteeing
a side-e�ect free execution and a complete description of the state of the �le
system.

Despite these drawbacks, Pythia provides a lightweight way of improving the qual-
ity of existing test suites and makes performing experiments easier and their results
more robust. Future work may address some of these issues to further enhance the
utility of Pythia.

3.3. RepairBox

Having studied and addressed the problem of inadequate test suites within APR
experimentation, in this section we look at the related problem of reproducibility of
results, before introducing a framework to eradicate the problem with minimal loss
of e�ciency.

Motivation

In addition to exposing weaknesses within publicly available bug scenarios, recent
studies have also highlighted the di�culties in accurately reproducing the results of
previous experiments. Whilst investigating the false positive repairs generated by
AE and GenProg on the ManyBugs bug scenarios, [Qi et al., 2015] were unable to
reproduce the original (plausible, but incorrect) repairs generated by GenProg and
AE in some instances. With no information about the environment of the experi-
ment beyond a (partially con�gured) virtual machine, the con�guration required to
produce these original results is di�cult to replicate.

Through personal experience with the ManyBugs bug scenarios, we have encoun-
tered di�culties in installing newer software on the virtual machine images pro-
vided by previous experiments. Given the lack of any additional documentation
with these VM images, creating a new, minimal environment that replicates the bug
can prove challenging.

In other work, where template-driven automated program repair was applied to Java
programs [Kim et al., 2013], none of the source code used within the experiment was

75

TOOLS AND TECHNIQUES

made available; only informal, ambiguous descriptions of the system were given,
making it impossible to reproduce the results of the original system.

Existing Solutions

In this section, existing approaches to allowing the results of APR experiments to
be reproduced are critiqued.

Source Files

The simplest technique for achieving reproducibility is to specify the name of a bug
scenario within a publicly available set of benchmarks and the release version of
the operating system used by the experiment, and to provide a set of source code
�les for the faulty and �xed versions of the program, omitting all other details. Cru-
cially, this approach misses details, including the state of relevant environmental
variables, installed packages on the system (and their associated versions), and the
state of various con�guration �les (many of which may be unknown to the experi-
menter).

Running the experiments within the speci�ed operating system is far from guar-
anteed to produce the same results, unless all other relevant setup stages are made
clear and followed correctly. Additionally, in some cases, the correct functioning of
the program also relies on the absence of certain �les and packages from the system.
In practice, this leads to needless hours spent trying to discover why a particular ex-
periment won’t reproduce the original results and taking measures to try to align
the results with those that are expected. In the worst case, the original experiment
may have su�ered from a mistake somewhere in its con�guration, but without clear
reference to the complete setup this is unknowable.

Virtual Machine Image

The most common approach to the problem of reproducing results is to provide an
accompanying virtual machine image, used to conduct the experiments. Conducting
experiments within a VM introduces considerable performance overheads, signi�-
cantly increasing the already long run-time of APR experiments. Additionally, such
an approach increases disk space and bandwidth requirements substantially as the
user needs to download a complete image of the VM to disk for each bug scenario
should they wish to replicate its results.

Furthermore, such an approach may prove excessively cumbersome when one wishes
to modify or extend the experiment. In particular, years later, aspects of the vir-
tual machine may cease to work correctly (e.g., package managers), or additional,
con�icting software may need to be installed to perform a modi�ed version of the

76

3.3. REPAIRBOX

experiment. Since the steps taken to create the VM are unclear, modi�cation can
prove di�cult and impractical. 5

Amazon EC2 AMI

Rather than supplying a virtual machine image in a common, open-source format,
one may provide a machine image as a proprietary AMI (Amazon Machine Image),6
usable on Amazon’s EC2 cloud computing service. This approach, used in later
experiments performed with GenProg, avoids some of the overheads involved in
running a standard VM on the user’s hardware, allowing it to be run on a faster,
purpose-built cloud computing platform. One may then provision (multiple) ma-
chines on the EC2 platform using the provided AMI to reproduce the results of an
experiment.

Since this approach only provides an image of the system used to perform the ex-
periment, without details of its creation, it also inherits the problems of extendibil-
ity and bandwidth from the VM approach. As the AMI �le format is proprietary,
the problem of extendibility is further exacerbated. This restriction also prevents
the machine from being run on locally available hardware (e.g., university compute
clusters), and forces the user to use—and pay for—Amazon’s compute services to
reproduce the result.

Vagrant and Puppet

In earlier attempts to produce a suitable platform for program repair research, we
explored the combined use of Vagrant7 and Puppet8. We used these technologies
to generate and provision a VM from a Vagrantfile, describing a base VM in a
human-readable format, and a set of Puppetfiles, providing instructions on how to
con�gure the VM and install the necessary packages. Whilst this approach partially
solved the problem of transparency encountered when using VM images, extending
the VM is still overly tedious and the performance remains inferior compared to a
container-based approach.

RepairBox

To avoid these problems, we present RepairBox, a platform for safely conducting
controlled, reproducible program repair experiments, with minimal compromise to

5We encountered this problem of extendibility when attempting to install a newer version of
OCaml, required by the software we were using, onto the VM of GenProg’s 2010 results. The pack-
age manager used by Fedora had transitioned from yum to dnf, and all of its sources were outdated.
Further, packages installed on the system prevented this version of OCaml from being installed.

6http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html. [Accessed: May,
2017].

7https://www.vagrantup.com/. [Accessed: May, 2017].
8https://puppet.com/. [Accessed: May, 2017].

77

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://www.vagrantup.com/
https://puppet.com/

TOOLS AND TECHNIQUES

Figure 3.5: Docker Containers (left) vs. Virtual Machines (right). Each container
sits on top of the Docker runtime, which provides access to the kernel of the host
machine. Each virtual machine virtualises its own stack, down to the level of the
hardware, and sits on top of a hypervisor, which allows multiple VMs to run on the
same machine.

performance. RepairBox operates by isolating individual bug scenarios and repair
tools into separate, minimal Docker containers that can be easily inspected and ex-
tended. By packaging bug scenarios as containers, RepairBox attains close to bare
metal performance, an important trait when performing a large number of repeats
of computationally-intensive program repair experiments.

As its means of packaging each bug scenario into a controlled, self-contained, exe-
cutable environment, RepairBox uses Docker containers. Container images provide
a lightweight means of encapsulating a piece of software and all of its dependencies
into a single, portable executable package, referred to as a container.9 Unlike virtual
machines, which virtualise at the hardware level, containers virtualise at the operat-
ing system level (illustrated in Figure 3.5). To do so, containers share the operating
system kernel of their host machine. As a result, containers use less compute and
memory resources than their VM counterparts, giving them a signi�cantly higher
level of performance [Felter et al., 2015]. Additionally, since containers are built as
a series of �le system layers, they typically size in the tens of MBs, rather than tens
of GBs.

By packaging bug scenarios as Docker images, users can quickly download pre-built
images from DockerHub10, using the repairbox download command.

To conduct experiments using these repair boxes, users can combine them with con-
tainers holding the repair tools required for the experiment, as illustrated in Figure
3.6. By adopting this approach, users can provide transparent, high performance
executable experiment designs as the replication package for their research.

9https://www.docker.com/what-container. [Accessed April, 2017].
10https://hub.docker.com. [Accessed: April, 2017].

78

https://www.docker.com/what-container
https://hub.docker.com

3.3. REPAIRBOX

Figure 3.6: Repair boxes can be used with repair tools by mounting the binaries,
provided by a repair tool container, into the repair box, via volume mounting.

Each bug scenario in the repository is accompanied by a Docker�le. This �le pro-
vides an executable set of instructions for constructing the corresponding image. An
except of the Docker�le for one of the libtiff scenarios is given in Figure 3.7.

To compose the image, Docker uses each instruction in the Docker�le (e.g., RUN,
FROM, ADD) to construct a series of read-only layers. Each of these layers represents a
�lesystem di�erence.11 This approach allows Docker to cache layers, thus reducing
build time. Importantly, it also allows images to be used as the base layer of another
image, using the FROM instruction.

RepairBox uses layering to e�ciently provide minimal images for its bug scenarios.
Each bug scenario is comprised of a stack of images, illustrated in Figure 3.8. At the
bottom of this stack sits the universal base image used by all bug scenarios, which
provides common functionality to all repair boxes. Above this image there rests an
image for the particular dataset to which the scenario belongs. On top of the dataset
image sits an image for the particular program. Finally, at the top of the stack rests
an image for the bug scenario.

Each repair box is structured identically, with all of its relevant �les (e.g., source
code, test suite, meta-data) within the /experiment directory. To allow test pri-
oritisation, reduction, and sampling to be used, each scenario implements a simple
bash-based test harness, which allows a single, speci�ed test to be executed, rather
than the entire suite.

For some bugs within RepairBox, the test suite is provided by the original dataset.
For the rest, where we observe issues with test case interference and inadequate
checking (i.e., only the exit status of the program), we use Pythia, described in Sec-
tion 3.2, to generate a stronger oracle from the original test suite. For each test
execution, Pythia creates a sandboxed environment (realised as a temporary direc-

11https://www.docker.com/what-container. [Accessed: April, 2017].

79

https://www.docker.com/what-container

TOOLS AND TECHNIQUES

FROM squareslab/repairbox:manybugs64

MAINTAINER Chris Timperley "christimperley@gmail.com"

install dependencies

RUN sudo apt-get update && \

sudo apt-get install -y --force-yes \

gcc-multilib psmisc zlib1g-dev && \

sudo apt-get clean && \

sudo apt-get autoremove && \

sudo rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

download Libtiff source code

RUN git clone https://github.com/vadz/libtiff src

...

Figure 3.7: An example Docker�le for one of the libtiff scenarios within
RepairBox.

tory) in which to perform the test. This behaviour allows us to avoid the problem
of test interference.

Containers

By using a Docker container as a means of accurately replicating a particular bug
scenario, rather than employing a VM-based approach, we can create reproduction
packages for APR experiments with the following advantages:

• Transparency: since the Dockerfile speci�es the exact steps required to
build the container, all of its details available to the user, making future mod-
i�cation and bug understanding simpler.

• Minimality: each Dockerfile is based on a minimal base image (for either
Ubuntu 14.04 or Fedora 23), between 200 to 400 MB, which is extended with
the minimal set of packages and con�guration required to replicate a partic-
ular bug and nothing more.

• Extendibility: Docker container images are built around the concept of lay-
ering, where the image from a container is built in a series of layer images,
each of which are cached, starting from a base image. Each layer represents
the resulting system image when a given instruction (e.g., apt-get install ...)
is executed on the resulting container for the previous layer.

Instead of building each of the RepairBox bug scenarios from scratch (us-
ing the provided Makefile), the user may download a pre-built image from
DockerHub using RepairBox’s command-line interface.

80

3.3. REPAIRBOX

Figure 3.8: The Docker image for a given bug scenario is built as a series of layers.
Each layer is shared by a number of images on the layer above, reducing disk usage
and build time.

• Performance: unlike traditional, hypervisor-based virtual machines, con-
tainers share the kernel of their host operating system, removing the need
to virtualise the kernel and hardware stack. As a result, the performance of
containers tend to be signi�cantly better than VMs, using fewer clock cycles,
and less memory and disk space.

Due to the fact that containers share the kernel of the host machine, bugs
that rely on a particular kernel are di�cult, and in some cases, impossible, to
reproduce within a Docker container. This limitation prevents the inclusion
of the valgrind bug scenarios from ManyBugs. A similar limitation applies
to bug scenarios that only occur on 32-bit architectures. In this case, however,
we can usually reproduce the bug by passing the appropriate �ags to make,
or by using a Docker image with 32-bit libraries as the base image.

At the cost of performance, those bug scenarios could be included into RepairBox
by hosting them within a suitable virtual machine (possibly provided by boot2docker12).
We leave this to future work. In most cases, however, we have found that a
speci�c kernel is not necessary.

Composition

To simplify the management of repair boxes through the RepairBox command-line
interface, discussed in Section 3.3.5, we require that repair boxes provide manifests.
These manifests, encoded as YAML �les, specify: the name of the bug scenario,
the dataset (and optionally, the program within a dataset) to which they belong,
the name of the Docker�le used for their construction, as well as any build time

12http://boot2docker.io. [Accessed: April, 2017].

81

http://boot2docker.io

TOOLS AND TECHNIQUES

bug: 69223-69224

build-arguments:

scenario: python-bug-69223-69224

dataset: manybugs

dockerfile: Dockerfile.bug

program: python

version: 0

Figure 3.9: An example bug scenario manifest.

version: 0

tool: genprog

image: christimperley/genprog:latest

environment:

PATH: "/opt/genprog3:${PATH}"

Figure 3.10: An example tool manifest describing GenProg.

arguments that should be passed to Docker. An example manifest is given in Figure
3.9. Similar manifests must also be provided for datasets and programs.

All of these entities (bug scenarios, programs, datasets) must provide a version su�x
parameter. Complete version numbers for entities are generated by concatenating
these numbers. For instance, for the bug scenario described in Figure 3.9, the com-
plete version number will be given by “D.P.B”, where D, P, and B are the version
su�xes for the dataset, program, and bug, respectively. This information is used by
RepairBox to determine whether a particular component is out-of-date and should
be updated.

Manifests may also be provided for containerised tools (e.g., GenProg, or Daikon).
An example tool manifest is given in Figure 3.10. This manifest speci�es a name and
version for the tool, the name of the Docker image for its container, and a dictionary
describing which environmental variables should be modi�ed within the repair box
upon launch.

Command-Line Interface

RepairBox hides the details of its implementation from its end-users through a sim-
ple, self-documenting command-line interface (CLI). Below, we brie�y discuss the
features of this CLI and provide examples of its use:

• repairbox -h: describes each of the commands provided by the RepairBox
CLI.

• repairbox list: produces a list of all artefacts of a given kind (e.g., bug
scenarios, datasets, tools). Example uses of this command are given in Figure

82

3.3. REPAIRBOX

$ repairbox list bugs

Bug Latest Installed Remote

------------------------- ------- - --------- -------

manybugs:libtiff:2005... 0.0.0.0 0.0.0.0 0.0.0.0

manybugs:libtiff:2005... 0.0.0.0 0.0.0.0 0.0.0.0

manybugs:libtiff:2005... 0.0.0.0 0.0.0.0 0.0.0.0

manybugs:libtiff:2006... 0.0.0.0 0.0.0.0 0.0.0.0

...

$ repairbox list tools

Tool Image Installed

------------ ----------------------------- -----------

genprog christimperley/genprog:latest True

searchrepair searchrepair:latest True

shuriken shuriken:latest True

...

Figure 3.11: Example uses of the repairbox list command.

3.11.

• repairbox install: installs a speci�ed repair box (or collection of boxes).
If the latest version of the repair box is hosted on DockerHub, its image will
be downloaded. If not, the repair box and its dependencies will be built from
scratch locally.

This command may also be used to install a registered tool onto the local
machine by downloading its image from DockerHub.

• repairbox uninstall: removes a speci�ed (set of) repair boxes from the
local machine.

• repairbox build: constructs a named repair box (or collection of boxes) and
their dependencies locally.

• repairbox download: downloads a pre-built image for a (set of) repair box(es)
or a repair tool from DockerHub.

• repairbox launch: spawns an interactive container for a given repair box.
The names of supported repair tools may also be passed via the --tools ar-
gument, causing the binaries for those tools to be imported into the container.
Internally, this command oversees the generation, linking and clean-up of the
required containers. An example use of this command is given in Figure 3.12.

83

TOOLS AND TECHNIQUES

host> repairbox launch manybugs:libtiff:2005-12-14-6746b87-0d3d51d \

--with genprog daikon

rbox> genprog problem.json

...

Figure 3.12: An example use of the repairbox launch command.

3.4. Methodology

Using the resources provided by the RepairBox project, together with Pythia, we
put forward a methodology for automated program repair experiments that is used
throughout the rest of this thesis.

Executable Experiment Designs

Experiment designs are described by simple scripts which interact with container-
ised bug scenarios and tools through the RepairBox interface. This approach allows
experiments to be concisely described, more easily understood, and to be accurately
reproduced. By imposing this requirement on the experiment, the bene�ts of using
containerisation, namely performance, extendibility, and isolation, are inherited by
the experiment. Since this script contains all of the steps necessary to run the ex-
periment, it essentially becomes an executable experiment design.

Host Platform

In the interest of identifying and avoiding rare bugs that only occur when particular
kernel versions are used, the experiment must state the kernel version and operating
system release used by the host machine. Additionally, where relevant, a description
of the hardware speci�cations of the host machine should also be given.

For the majority of the experiments conducted in this thesis, we used cloud com-
puting facilities to distribute the load across a large number of machines, hosted
on Amazon AWS and Microsoft Azure. Directions on expediting the running of ex-
periments within a distributed environment are provided with each experiment’s
reproduction package.

Justi�cation of Benchmarks

In addition to supplying a simple script capable of running the experiment, this
methodology requires that users justify their selection of benchmarks within the
context of their research questions. Any weaknesses, trade-o�s, or arti�ciality within
the bug scenarios must be stated and mitigated.

84

3.5. CONCLUSION

Statistical Hypothesis Testing

Where possible, we advocate that statistical hypothesis testing be used to demon-
strate the statistical signi�cance of any results. In most cases, we do not have reason
to assume that the results will �t to a particular probability distribution, and so we
must use nonparametric statistics to describe and test them [Downey, 2011]; non-
parametric statistics should also be used when the median is a more appropriate
measure of the central tendency of the data. Although nonparametric statistics al-
low us to describe and test data without assuming a particular distribution, they
do so at the cost of decreased statistical power (i.e., the probability of correctly re-
jecting the null hypothesis). This decreased statistical power means that a greater
number of samples are needed to increase the likelihood of detecting a signi�cant
e�ect when one exists.

To test whether the performance of one search algorithm is stochastically greater
than that obtained by another, a one-sided test for statistical signi�cance should be
used, such as the Mann-Whitney U test [Mann and Whitney, 1947]. To test that
two groups are not drawn from the same distribution, one may use a two-sided
Kolomogorov-Smirnov (KS-2) test [Downey, 2011].

In addition to determining statistical signi�cance, one should also measure e�ect

size (i.e., how big is the di�erence between the two groups?). Vargha and Delaney
[2000]’s A12 measure is a popular choice for nonparametric e�ect-size measure-
ment. Intuitively, A12 describes the probability that a randomly selected value from
group A is greater than one from group B [Neumann et al., 2015]. Vargha and De-
laney [2000] provide guidelines for interpreting the size of the e�ect: 0.5 indicates
no e�ect, 0.56 is a small e�ect, 0.64 is a medium e�ect, and 0.71 is a big e�ect.

3.5. Conclusion

In this chapter, we identi�ed and discussed the problems of inadequate test suites
and incomplete reproduction packages within studies of APR, before introducing
Pythia and RepairBox to address them. Using both of these tools, we propose a
more robust, e�cient experiment methodology, allowing research to be con�dently
performed for a diversity of research questions using hundreds of bug scenarios,
collated and edited from several existing datasets.

RepairBox and Pythia are available to download at:

https://github.com/squaresLab/RepairBox

https://github.com/ChrisTimperley/Pythia

Over time, we intend to explore further avenues of improvement to RepairBox,
allowing it to be used for a wider range of experiments within program testing

85

https://github.com/squaresLab/RepairBox
https://github.com/ChrisTimperley/Pythia

TOOLS AND TECHNIQUES

and genetic improvement. Additionally, we plan to incorporate further sources of
bugs into RepairBox, including the DARPA Security Challenge13, IntroClass, and
CVE14.

13http://archive.darpa.mil/cybergrandchallenge/
14https://cve.mitre.org/

86

http://archive.darpa.mil/cybergrandchallenge/
https://cve.mitre.org/

CHAPTER 4

Fault Localisation

For automated program repair to become an economical and e�ective means of �x-
ing bugs, and thus break through into the mainstream, techniques will need to be
capable of solving a wide range of bugs within a reasonable resource window. To
go beyond the small number of �xes possible with current techniques, search-based
repair will need to incorporate a richer repair model, as discussed in Chapter 5.
Additionally, techniques will need to be capable of generating patches spanning
multiple lines, going beyond the single-line patches currently produced by all but
two approaches [Le Goues et al., 2012a; Mechtaev et al., 2016]. As a result of these
requirements—a richer repair model and the ability to produce multi-line �xes—the
search space will undergo a combinatorial explosion. As one approach to tack-
ling this growth, more accurate means of localising the source of faults will need
to be discovered. At present, all repair techniques make use of relatively simple
spectrum-based fault localisation techniques, which often prove ine�ective at pin-
pointing suspicious statements within a basic block (since all statements within
a basic block share the same coverage, except in the case of crashing and non-
terminating faults).

Previous work by Qi et al. [2013] compared the e�ectiveness of several spectrum-
based fault localisation techniques by measuring the average number of candidate
patches (NCP score) that were evaluated before a repair was found (using GenProg).
On a sub-set of the ManyBugs benchmarks [Le Goues et al., 2015], Qi et al. [2013]
found that the Jaccard metric (discussed in more detail in 4.1) yielded the lowest
NCP. Almost all of the solutions that were found during the search were the subject
of over�tting, however, and so it is unclear whether Jaccard was more e�ective at
localising the fault or simply better at selecting areas prone to over�tting. Regard-
less, the accuracy of spectrum-based fault localisation is simply not good enough
for the purposes of repair. Often, hundreds of statements will be assigned the same
suspiciousness score—a value which determines the probability of a statement being
selected as a subject for repair.

Whilst there are a number of complementary methods for fault localisation, dis-
cussed in 4.1, almost all of these are performed in an o�ine, preprocessing step. In
this chapter, we turn our attention to the young and promising �eld of Mutation-
Based Fault Localisation (MBFL) [Moon et al., 2014a; Papadakis and Le Traon, 2015]
to determine whether information collected over the course of the search, in the
form of mutant test suite results, can be harnessed to re�ne the fault localisation
online. More speci�cally, we ask:

87

FAULT LOCALISATION

RQ1: Can the results of candidate patch evaluations, gathered over the

course of the search, be used to improve the accuracy of the fault local-

isation, online?

To answer this question, we �rst perform an exploratory analysis of the test case
results of randomly sampled single-edit mutants within GenProg’s search space.
Based on the �ndings of this analysis, we propose a number of fault localisation
techniques which incorporate knowledge of mutant test suite evaluations. In con-
trast to the impressive results demonstrated by previous studies on MBFL, we �nd
that the positive contributions of this knowledge to the accuracy of the fault locali-
sation are negligible. In Section 4.4, we speculate on the reasons for this result and
discuss alternative means of improving the fault localisation process.

In summary, the primary contributions of this chapter are the following:

• A detailed analysis of the test suite results of mutants sampled fromGenProg’s
search space, covering 28 bugs in six real-world C programs.

• An evaluation of several alternative fault localisation techniques that use the
test case outcomes of mutants produced during the search.

• An informed discussion of the limitations of GenProg’s statement-level re-
pair actions in identifying faulty locations and how these limitations might
be addressed through the use of more granular repair actions.

The rest of this chapter is structured as follows: Section 4.1 presents a brief review
of several approaches to automated fault localisation, the majority of which have
not been applied to automated program repair. Section 4.2 conducts an analysis of
the test case outcomes of mutants randomly sampled from GenProg’s search space,
in an e�ort to determine whether test suite behaviour can be used to discriminate
faulty statements from correct ones. Section 4.3 proposes and evaluates a number
of fault localisation measures based on the �ndings of the previous section. Finally,
Section 4.4 summarises the �ndings of the study and discusses a number of possible
explanations for the lack of noticeable improvement, as well as future directions for
research.

4.1. Background

In this section, we provide the reader with a brief introduction to a number of dif-
ferent methods for automated fault localisation.

88

4.1. BACKGROUND

Spectrum-Based Fault Localisation

Spectrum-Based Fault Localisation (SBFL), also referred to as statistical fault locali-
sation [Landsberg et al., 2015], operates by assigning each statement in the program
with a suspiciousness value s ∈ R, encoding the likelihood that the statement is
(partly) responsible for the fault. In most cases, SBFL proceeds to rank each state-
ment within the program by its suspiciousness. An exception to this, is in the case
of automated repair, where most approaches use the suspiciousness values them-
selves to better decide exactly how resources should be spent during the search for
a repair.

When used to manually identify and repair bugs, suspiciousness information is vi-
sualised by highlighting source code lines within a viewer with di�erent brightness
and hue components, allowing suspicious statements to be quickly identi�ed, as il-
lustrated in Figure 4.1 [Jones et al., 2002]. Through such visualisation, developers
can better decide where to focus their search for the bug, leading to a substantial
reduction in the time and e�ort involved in debugging [Jones et al., 2002].

To generate a set of suspiciousness values, SBFL �rst generates a program spectrum,
concisely summarising the coverage data in the form of an n-by-4 array, where
n is the number of statements within the program [Yoo, 2012]. Each row in the
array encodes a summary of the execution data for a given statement, in the form of
four integer variables, (ep, ef , np, nf). ep and ef state the number of times that the
statement was executed by a passing and failing test case, respectively. Conversely,
np and nf specify the number of times the statement was not executed by a passing
and failing test case. These counters may record the number of times a statement
was executed in total (i.e., multiple executions of a statement for a given test case
may count), or as is more often the case, the number of test cases that executed the
given statement (i.e., only a single execution is recorded for each test case).

Once the program spectrum has been generated, SBFL proceeds to compute sus-
piciousness values for each statement through the use of a suspiciousness metric,
also known as a risk evaluation formula. This metric maps each row in the program
spectrum, (ep, ef , np, nf), to a suspiciousness value, represented by a real number.
By applying this mapping across the entire spectrum, the array is reduced to a list
describing the relative suspiciousness values of each statement in the program. An
example of a program spectrum can be found in Section 2.1.

Spectrum

The term “spectrum” was introduced to the �eld by Reps et al. [1997], and later
generalised by Harrold et al. [2000]. Generally, the term is taken to refer to the fre-
quency of statement execution, whether the frequency be a measure of the number
of test cases that execute a given statement, or the total number of times a state-
ment is executed by all (positive or negative) test cases. Alternatively, when used
as a debugging aid for humans, lines may be used as the entities of interest when

89

FAULT LOCALISATION

Figure 4.1: A screenshot of the original Tarantula fault localisation visualisation
tool. Lines coloured red are executed primarily by the failing test cases, suggesting
a high suspiciousness. Lines that are mostly covered by the passing test cases are
coloured green. Brightness is used to indicate a form of con�dence in the suspi-
ciousness attributed to a given line: The brightness of a line is given by greater of the
fraction of failing tests covered by the line, and the fraction of passing tests covered.

Source: http://spideruci.org/fault-localization/ (May 2017).

90

http://spideruci.org/fault-localization/

4.1. BACKGROUND

computing the spectrum, rather than statements. Similarly, one can monitor the
execution of function calls, program paths, n-grams, program slices, use-def chains,
invariants, and more [Naish et al., 2011; Renieris and Reiss, 2003].

Suspiciousness Metric

As numerous studies have shown [Jones and Harrold, 2005; Qi et al., 2013; Yoo, 2012],
the e�ectiveness of SBFL can be attributed to the choice of suspiciousness metric, of
which there are many. Since the publication of Tarantula [Jones et al., 2002], there
has been a proliferation of suspiciousness metrics. Over the rest of this section, we
shall investigate a handful of the most popular and successful metrics put forth in
the literature.

• Set Union and Intersection: Two of the simplest suspiciousness metrics are
the set union and set intersection metrics [Renieris and Reiss, 2003]. These
metrics assign a unitary suspiciousness value to all statements that belong to
a given set. The sets for the set union and set intersection metrics are given
in Equations 4.1 and 4.2, respectively:

f −
⋃
S

s (4.1)

⋂
S

s− f (4.2)

where f is the set of statements covered by a (singular) failing run, each s ∈ S
is the set of statements covered by a given passing run, and − represents the
non-symmetric set di�erence.

In its standard form, the set union metric assigns a unitary suspiciousness
value to each statement within the di�erence of the set of statements executed
by a single failing test case, and the union of the statements executed by the
passing test cases. In cases where the faulty statement is executed by both
the passing and failing test cases, such as an incorrect conditional, the faulty
statement will be missed entirely. The intuition behind the set union metric
is that the bug is to be found within the statements uniquely executed by the
failing test case.

The set intersection metric, on the other hand, is built upon the polar opposite
intuition: the faulty statement is absent from the failing test case. Whilst the
set di�erence may aid the programmer’s understanding of the faulty test case
behaviour, it also prevents the program from being repaired automatically, as
all changes will go unnoticed (since none of the mutated statements are ever
executed by the failing test case).

91

FAULT LOCALISATION

Pan and Spa�ord [1992] and Chen and Cheung [1997] propose soft extensions
to these metrics, which incorporate frequency of execution, similar to the
majority of other suspiciousness metrics.

• Nearest Neighbour: A slightly more advanced technique than the set union
and set intersection methods discussed above is the nearest neighbour metric,
introduced by Renieris and Reiss [2003].

This approach �rst determines the passing test case with the smallest dis-
tance to the failing test, where distance is measured as the cardinality of the
non-symmetric di�erence between the failing test spectrum and passing test
spectrum, as shown by Equation 4.3:

F − P (4.3)

where P is the set of statements covered passing a passing test, and F is the
set of statements covered by the failing test.

Once the passing test with the closest behaviour to the failing test, as mea-
sured by the distance metric, has been found, all statements within F −P are
assigned a unit suspiciousness value.

• Tarantula: A highly popular metric, credited as the �rst system to apply
spectrum-based ranking to software diagnosis for an imperative language
[Jones and Harrold, 2005; Naish et al., 2011]. Originally designed as a means
of visualising suspicious locations within a faulty program [Jones et al., 2002],
but later adapted and more widely used as a suspiciousness metric in its own
right [Jones and Harrold, 2005]; an adapted form of this metric is given in
Equation 4.4.

ef
ef+nf

ep
ep+np

+
ef

ef+nf

(4.4)

Although not optimal, Tarantula has been shown to give good results for au-
tomated repair [Qi et al., 2013] and has served as the suspiciousness metric of
choice for several automated repair systems [Ke et al., 2015; Kim et al., 2013;
Le Goues et al., 2012a; Qi et al., 2014].

• GenProg: The default suspiciousness metric in GenProg, given by Equation
4.5, attaches a minimal, non-zero weight to statements that are executed by
both the positive and negative test cases, and a maximal weighting to state-
ments that are executed by the negative test exclusively. Statements that are
unexecuted by the negative test case are assigned a suspicious of zero, and
excluded from consideration.

92

4.1. BACKGROUND


1.0 if ef > 0 ∧ ep = 0
0.1 if ef > 0 ∧ ep > 0
0 if ef = 0 ∧ ep = 0

(4.5)

• Op1 and Op2: Op1 and Op2, given in Equations 4.6 and 4.7, respectively, are
two suspiciousness metrics introduced by Naish et al. [2011]. Unlike previous
metrics, Op1 and Op2 are designed to perform optimally for single fault pro-
grams on a model program, ITE2, composed of two consecutive If-Then-Else
statements. Beyond theoretical optimality, empirical observations have also
demonstrated the strong performance of these metrics on a widely studied
sub-set of single fault bugs from the SIR dataset.

{
−1 if nf > 0
np otherwise (4.6)

ef −
ep

ep + np + 1
(4.7)

• Jaccard andOchiai: Jaccard [Jaccard, 1901], given in Equation 4.8, and Ochiai
[Ochiai, 1957], given in Equation 4.9, are both examples of suspiciousness
metrics that have been adapted from existing similarity metrics in other �elds
[Abreu et al., 2007; Naish et al., 2011].

ef
ef + nf + ep

(4.8)

ef√
(ef + nf) · (ef + ep)

(4.9)

• Evolved: [Yoo, 2012] transform the problem of deciding a suitable metric into
a search problem, using genetic programming to evolve an e�ective metric
for automated repair. The results of this search are a set of metrics that out-
performed the most successful human-designed metrics proposed up to that
point, including Op1, Op2 and Jaccard.

Comparison

Naish et al. [2011], and later Landsberg et al. [2015], proved that many of the pro-
posed suspiciousness metrics are equivalent for the purposes of ranking, by exploit-
ing their monotonicity, i.e.,m1(x) < m1(y) =⇒ m2(x) < m2(y). Although this is
an insightful result and further investigation goes towards explaining the successes
of these metrics, for the purposes of automated repair, we are more interested in the
absolute di�erence in scores between statements, so that we may more accurately
decide how to divide our e�orts.

93

FAULT LOCALISATION

To compare the e�ectiveness of di�erent spectrum-based fault localisation tech-
niques, Naish et al. [2012] formally introduce the Expense measure, which quanti-
�es accuracy as the fraction of statements within the program that would need to be
checked by the programmer before a faulty statement is found were they to examine
them in rank order.

Although Parnin and Orso [2011] �nd that ranking statements by their suspicious-
ness score allowed programmers to �nd a bug more quickly, work by Qi et al. [2013]
demonstrates that suspiciousness metrics with a low expense are not necessarily the
best metrics for automated repair. As an alternative, Qi et al. [2013] propose measur-
ing the number of candidate patches (NCP) produced by GenProg before a repair
is found. To account for the stochastic nature of the search, the process must be
repeated a �xed number of times and averaged.

Comparing the Expense and NCP measures of a number of proposed suspiciousness
metrics across 11 benchmark programs taken from the GenProg ICSE 2012 bench-
mark suite [Le Goues et al., 2012a], Qi et al. [2013] found Jaccard to be the best
performing metric, despite previously being shown to produce sub-optimal ranking
by Naish et al. [2012].

Following the proposal of the NCP measure, Moon et al. [2014a] introduced an al-
ternative evaluation metric: Locality Information Loss, or LIL for short. Like NCP,
LIL is able to approximate the di�culty of �nding a repair for a given bug using
APR techniques. Importantly, it does so without the need to perform expensive
APR trials.

To determine the accuracy of a given set of suspiciousness values, LIL measures
the distance between the probability distribution implicitly de�ned by those suspi-
ciousness values, Pτ , and an ideal probability distribution, PL. Pτ and PL are used
to describe the probability of an APR technique selecting a particular statement as
the target location of the repair. Thus, the ideal probability distribution, PL, is de-
�ned as the distribution in which each of the faulty lines is assigned a maximal
probability; all other correct lines are given an ε probability of selection, for rea-
sons of numerical stability. The distance between Pτ and PL is computed using the
Kullback-Leibler measure, given in Equation 4.10:

DKL(PL||Pτ) =
∑
i

lnPL(si)

Pτ (si)
PL(si) (4.10)

where P (si) gives the probability of selection for the statement si.

On a single bug from the GenProg TSE 2012 benchmarks (look utx 4.3), Moon
et al. [2014a] showed a correlation between LIL and NCP for a number of di�erent
spectrum-based fault localisation techniques. As previously demonstrated by Qi
et al. [2013], Moon et al. [2014a] showed that the EXAM score appeared to have no
predictive value.

94

4.1. BACKGROUND

Program Slicing

Program slicing is a technique for reducing programs to a minimal form, known
as a slice, which still retains some given semantics of interest, known as the slicing

criterion [Harman and Hierons, 2001]. Slices are generated by removing all parts of
the given program which can be determined to have no e�ect on the slicing criterion.
Slicing has been used for aiding program comprehension, debugging, dead code
removal, cohesion analysis, and more [Silva, 2012]. Importantly, slicing may be
used as a fault localisation technique by reducing the program to only those parts
which have an e�ect on the location at which the failure was observed. Naturally,
this prevents slicing from being used to �nd memory leaks, since the point at which
the program crashes—when it runs out of memory—may have no relation to the
fault.

Static Slicing

Program slicing was �rst introduced in 1979, as part of Mark Weiser’s Ph.D. [Weiser,
1979] thesis, in the form of a technique that would later become known as static

program slicing [Weiser, 1981]. Static program slicing computes the set of statements
S, referred to as the program slice, that may a�ect the value of a variable of interest
v ∈ V at a statement x. Collectively, the set of variables of interest V and the
statement of interest x are termed the slicing criterion, given as C = (x, V). The
slice for C = (x, V) can be also be computed from the union of the slices of each of
its variables v ∈ V , as shown in Equation 4.11.

C = (x, V) =
⋃
v∈V

(x, {v}) (4.11)

There are two types of program slice: the backward slice and the forward slice. A
backward slice contains all statements in a given program P that may have an e�ect

upon C , whilst a forward slice consists of the statements that C may a�ect.

The program slice is usually computed by gradually removing statements from the
program P which are irrelevant to the slicing criterion, leaving a minimal program
which retains the desired properties of interest. By employing backwards slicing,
we can exploit this to remove all statements from the program which can be shown
to have no (static) e�ect upon C , thus reducing the number of statements the pro-
grammer needs to consider and the debugging e�ort. An example of a backwards
static slice is given in Figure 4.2.

Whilst backwards slicing can help to reduce the program to a smaller form, quite
often, the resulting slice can remain a considerable size. This is especially the case
for large, well-constructed programs, where statements exhibit a high degree of
cohesion; in such programs, the value of each variable is dependent on many oth-
ers.

95

FAULT LOCALISATION

1 read(text);

2 read(n);

3 int lines = 1;

4 int chars = 1;

5 string subtext = "";

6 c = getChar(text);

7 while (c != EOF) {

8 if (c == ’\n’) {

9 lines = lines + 1;

10 chars = chars + 1;

11 } else {

12 chars = chars + 1;

13 if (n != 0) {

14 subtext = subtext << c;

15 n = n - 1;

16 }

17 }

18 c = getChar(text);

19 }

20 write(lines);

21 write(chars);

22 write(subtext);

read(text);

int lines = 1;

c = getChar(text);

while (c != EOF) {

if (c == ’\n’) {

lines = lines + 1;

}

c = getChar(text);

}

write(lines);

Figure 4.2: An example of backwards static slicing on a small program. The source
code on the right shows the sliced form of the source code on the right, where
(20, lines) is set as the slicing criterion. Adapted from example given in [Silva,
2012].

96

4.1. BACKGROUND

Dynamic Slicing

Whereas static slicing determines the set of statements that could a�ect the slic-
ing criterion under all possible conditions, dynamic slicing [Korel and Rilling, 1998]
produces the set of only those statements that are actually executed when the pro-
gram is supplied with a certain input sequence [Harman and Hierons, 2001]. This
technique builds upon static slicing, constructing a dynamic slice instead, according
to a dynamic slicing criterion. The dynamic slicing criterion is almost identical to
its static counterpart, except for the addition of an input sequence i, describing the
particular set of inputs to the program for which a slice should be produced; it is
described using the form C(x, V, i). In the case of APR, each test case can be used
to provide a particular input sequence.

Using a dynamic slice, rather than a static slice, tends to give us a sizeable reduction
in the number of statements that need to considered when debugging the program
for a particular failing test case. However, this reduction comes at the cost of having
to compute the speci�c control and data-�ow dependencies produced by the given
input sequence; a problem which requires the resource intensive construction of a
complex data structure, such as a trace.

Other Forms of Slicing

A recent survey of program slicing techniques [Silva, 2012] listed 29 variants. Below,
we brie�y focus on the sub-set of these variants which are immediately applicable
to fault localisation.

• Conditioned Slicing: Rather than slicing according to a speci�c execution
of the program using a given input sequence, conditioned slicing [Ning et al.,
1994] allows the slicing criterion to specify a boolean expression that be must
be satis�ed by the program inputs. For instance, one may provide the boolean
expression F , x = y − 1, instructing the slicer to consider only the possible
executions of the program when its inputs x and y satisfy F . Using this infor-
mation, the slicer is able to prune unreachable statements, producing a slice
that is at least as small as the static slice.

• Relevant Slicing: Whilst dynamic slicing yields the slice of program state-
ments that actually had an e�ect upon the slicing criterion, the relevant slice
is a superset of the dynamic slice, including the set of statements that could
have a�ected the slicing criterion [Agrawal et al., 1993]. The slicing criterion
used remains the same as that used by dynamic slicing.

This technique can be used to �nd statements whose contamination prevents
them from impacting upon the variables of interest within the slicing crite-
rion. In such cases, where a statement does not a�ect the variables of interest,
the dynamic slice will fail to include the faulty statement.

97

FAULT LOCALISATION

• Hybrid Slicing: Hybrid slicing [Gupta and So�a, 1995] is an alternative slic-
ing technique that avoids the need to compute large data structures on the
order of gigabytes incurred by dynamic slicing, whilst increasing precision
over static slicing by still using dynamic information. To achieve this feat, hy-
brid slicing incorporates knowledge of which statements have been executed
(acquired from the coverage information) into the static analysis, removing
from the slice those statements which are in a non-executed possible path of
the computation [Silva, 2012].

• Interprocedural Slicing: The original form of program slicing has since
been reclassi�ed as intraprocedural slicing, as static slicing fails to exploit the
boundaries of procedure calls, leaving statements within the slice that have
no e�ect upon the criterion [Silva, 2012]. To address the loss of precision,
Horwitz et al. [1990] use a System Dependence Graph (SDG) to capture depen-
dencies within the program. The SDG allows information about the calling
context of procedures to be taken into consideration by the slicer [Silva, 2012].

• Quasi-Static Slicing: The quasi-static slicing criterion [Venkatesh, 1991] al-
lows a slice to be produced for a program where some of its inputs are �xed
but the rest are unknown.

• Call-Mark Slicing: Similar to hybrid slicing, call-mark slicing provides a less
expensive alternative to dynamic slicing by using the knowledge of which
statements were executed, together with the program’s input sequence, to
yield a smaller program dependence graph (PDG) by pruning unvisited state-
ments [Nishimatsu et al., 1999].

• Dependence-Cache Slicing: Similar to call-mark slicing, dependence cache
slicing uses dynamic information to remove irrelevant statements from the
slice, via a richer PDG to exploit possible data dependence relationships pro-
duced by the input data [Silva, 2012; Takada et al., 2002]. With this informa-
tion, dependence-cache slicing is able to prune infeasible edges from the PDG,
yielding a slice that, on average, tends to be smaller than a call-mark slice.

• Program Dicing: Uses the set di�erence of at least two slices to remove
statements which appear to be correct (determined from a set of slices for
passing inputs) from the slice of a failing input [Lyle, 1987], exploiting the
intuition that statements belonging exclusively to the negative slice are more
likely to contain the fault.

• Stop-List Slicing: Stop-list slicing [Gallagher et al., 2006] augments the slic-
ing criterion with a stop list, specifying which variables are considered un-
interesting and should be omitted from the slice. The stop-list is realised by
removing all assignments to variables within the list and all data dependencies
stemming from those assignments.

• Barrier Slicing: Allows the programmer to control which regions of the
program may be considered when building the slice, and which areas may
not, allowing the programmer to exclude trusted, correct code from the slice

98

4.1. BACKGROUND

[Krinke, 2003, 2004]. This ability is made possible through the introduction of
barriers in the slicing criterion, specifying which nodes or edges of the PDG
may not be passed during the graph traversal [Silva, 2012].

• Concurrent Slicing: As concurrent programs cannot be represented using
the PDG or SDG, concurrent slicing must operate on extended, thread-aware
forms of the CFG and the PDG, known as the threaded CFG (tCFG) and threaded
PDG (tPDG), respectively [Silva, 2012]. When threads are synchronised or al-
lowed to communicate, a new level of complexity is added to the analysis
in the form of the interference dependencies introduced between statements.
Such dependencies highlight statements that share a data dependency and
may be executed in parallel. Those dependencies are not transitive, however,
unlike control and data dependencies, and so concurrent slicing techniques
must treat them specially. For a recent overview and evaluation of concurrent
slicing techniques, the reader is referred to [Gi�horn and Hammer, 2007].

• External State Aware Slicing: Sivagurunathan et al. [1997] demonstrated
that standard slicing techniques fail to account for the modi�cation of exter-
nal state through I/O operations, potentially leading to incorrect slices. To
address this shortcoming, they associated each I/O operation with its own
special variable, allowing the external state to be observed by the slicer. To
achieve this, however, the original program must be subject to a transforma-
tion which maps the original program to its equivalent in a special language
that includes these external state variables. Later, further revisions to the slic-
ing process were introduced by Tan and Ling [1998], and Willmor et al. [2004],
which allowed the slicer to account for database operations.

Delta Debugging

Delta Debugging [Zeller and Hildebrandt, 2002] is an e�cient method for deter-
mining the cause of regressions (i.e., changes to the program that introduce new
bugs) between two software versions in worst-case linear time, with respect to the
number of changes introduced between the two versions. By analysing the set of
di�erences C , or deltas, between an passing version of the software, referred to as
the baseline, and a failing version, the DD algorithm is capable to �nding the mini-
mal set of failure inducing changes c ⊆ C . This technique allows users to �nd the
minimal set of changes that explain a regression.

DD is capable of �nding the minimal set of failure-inducing changes c, where |c| > 1
and ∀c′ ⊂ c(result(c′) 6= PASS), without having to test each of the 2n possible
sets of changes. To �nd the minimal sub-set, DD employs a variant of binary search
to divide and conquer the set of all changes. At each step, the algorithm halves the
set of changes into c1 and c2, and recursively searches the half which continues to
fail, until c contains only a single edit. In the event where neither c1 nor c2 contain
the failure inducing changes, known as interference, the algorithm continues the
binary search on each half without discarding any changes.

99

FAULT LOCALISATION

A more advanced delta-debugging algorithm, DD+ [Zeller and Hildebrandt, 2002],
removes a number of assumptions within DD to allow the approach to be applied in
cases where certain changes may prevent the program from compiling or executing
correctly in the absence of particular changes. To achieve this ability, the e�ciency
of the algorithm is degraded, but steps are taken to ensure that in most cases, the
algorithm is capable of �nding results in a reasonable amount of time.

Although delta-debugging can be an e�ective technique for �nding the cause of re-
gressions, the associated cost of testing at least log n variants, and its limited scope
prevent it from being more widely used as a means of fault localisation within auto-
mated repair. However, through a slight rephrasing, the delta-debugging algorithm
can be applied to a wider set of problems beyond fault localisation. Instead, we can
use DD to �nd the minimal sub-set c ⊆ C which retains some arbitrary property
of interest, I . Exploiting the wider applicability of this technique, GenProg uses
the original delta-debugging algorithm as a post-processing step to minimise the
sequence of edit operations within the patch produced by the search [Weimer et al.,
2009].

Predicate-Based Fault Localisation

Whereas most fault localisation techniques attempt to localise the fault to a par-
ticular statement—especially those applied within the context of program repair—
B. Le et al. [2016] propose a novel technique, Savant, for identifying faulty methods
within Java programs. To perform localisation, Savant uses Daikon [Ernst et al.,
2007], an o�-the-shelf likely invariant mining tool, to extract plausible invariants
for each of the methods within the program. Using Daikon, Savant produces two
sets of invariants: one based on observations of the passing test cases, and another
for the negative tests. To determine the set of suspicious methods, Savant uses
Daikon’s Di� feature to �nd invariant changes (e.g., “x is less than zero” becomes
“x is greater than zero”) between the positive and negative invariant sets; methods
which exhibit such changes in their invariants are deemed to be suspicious.

Given the prohibitive costs of execution trace collection and invariant mining for
large-scale programs, Savant uses method clustering and test case selection heuris-
tics to reduce the costs of these processes. To begin with, Savant excludes from
consideration, all methods that are not executed by any of the negative tests. The
remaining methods are thereafter grouped into clusters on the basis of the posi-
tive tests that cover them; methods that are covered by the same positive tests are
more likely to be grouped together. After identifying method clusters, Savant pro-
duces execution traces for each—rather than an individual execution trace for each
method—across all of the negative test cases and a sub-set of passing tests. This
sub-set is selected for coverage-adequacy using a greedy algorithm. Speci�cally,
Savant �nds a sub-set of positive test cases where each method within the cluster
is covered by at least T test cases (where T is a tunable parameter). Using the gen-
erated execution traces for each cluster c, Savant generates the following sets of

100

4.1. BACKGROUND

invariants across each of the methods contained within the cluster:

• inv(Fc), the set of invariants over the negative test cases that cover c.

• inv(Pc), the set of invariants over the positive test cases that cover c.

• inv(Fc ∪ Pc), the set of invariants over all test cases that cover c.

Using those invariant sets, Savant produces a series of invariant change features,
usable by its learn-to-rank model. To generate these features, Savant uses Daikon’s
Invariant Di� tool to describe the addition, removal, and modi�cation of invariants
between the mined invariant sets. From these di�erences, Savant yields 290,163
features, each specifying the frequency of a particular kind of invariant change (e.g.,
NonZero to EqualZero) between a given pair of invariant sets, based on its 311 in-
variant types. Together with these invariant change features, Savant also uses a set
of ten suspiciousness score features, where each represents the computed suspicious-
ness value computed for the particular method by a state-of-the-art SBFL metric.
Before these features are used by learning or ranking, each of them is normalised
within the range [0, 1].

To learn a model that ranks methods by their likelihood of being faulty, on the basis
of their extracted features, Savant applies rankSVM [Joachims, 2002]—a popular,
o�-the-shelf learning-to-rank algorithm—to a corpus of bug �xes. The learning al-
gorithm is fed the methods modi�ed by the programmer as its ground truth for the
location of the fault, together with the extracted feature set. Once the model has
been learnt, Savant returns a ranked list of methods for a given program, computed
using its extracted feature set.

Out of 357 bugs in 5 programs sourced from the Defects4J dataset [Just et al., 2014],
Savant correctly localises 63.08, 101.72 and 122 buggy methods on average within
the top 1, top 3, and top 5 of the ranked lists it generates, respectively. This corre-
sponds to a 57.73%, 56.69% and 43.13% improvement over the best performing SBFL
techniques, at the top 1, top 3 and top 5 positions, respectively.

Although Savant provides a signi�cant boost in the accuracy of method-level fault
localisation, its rank-based nature prevents it from describing the degree of suspi-
ciousness for each method. Studies by Qi et al. [2013] showed that the best per-
forming fault localisation techniques for automated program repair, as measured by
the (average) Number of Candidate Patches till a repair is found, was sub-optimal in
terms of its EXAM score. To e�ciently �nd faults, automated program repair needs
more detailed localisation information. It may be possible to replace the learning-
to-rank algorithm used by Savant with a more conventional SVM algorithm, and
to train the model to compute suspiciousness values directly. The objective could be
to reduce the LIL score of the resulting suspiciousness value distribution—a metric
that has been shown to be correlated with NCP [Moon et al., 2014b].

101

FAULT LOCALISATION

MUSE

Mutation-based Fault Localisation, or MUSE, is a relatively new fault localisation
technique introduced by Moon et al. [2014a]. Taking inspiration from mutation
testing, MUSE attempts to determine the location of a fault by mutating the pro-
gram and observing its e�ect upon the results of the test suite. MUSE assumes
that changes made to correct program statements, rather than faulty statements,
are more likely to introduce new bugs, which can be detected by the positive test
cases. MUSE attempts to exploit this assumption to distinguish between faulty and
correct statements using the results of a mutation analysis. Empirical evaluation on
a set of 12 bugs from the ICSE 2012 benchmarks showed MUSE to produce 25 times
more precise information than the best SBFL technique in terms of Expense, and 2.29
times more precise than Op2 according to the more appropriate LIL metric.

Let P be a faulty program, which passes all positive test cases and fails all negative
cases, and mf and mc be mutants of P which mutate the faulty statement and a
correct statement, respectively. Given these de�nitions, MUSE is founded on two
conjectures.

The �rst conjecture is that negative test cases are more likely to pass on mf than
on mc, since faulty programs are usually �xed by modifying the faulty statement
(and are more di�cult to �x through mutation to correct statements). This rea-
soning is based on the observation that mf must satisfy strictly one of the three
outcomes:

1. Equivalent mutant; the mutant introduces a syntactic change to the pro-
gram but retains the same semantics, in which case the result of the negative
test case execution is unchanged, as the bug still remains.

2. Non-equivalent, faulty mutant: the mutant modi�es the semantics of the
program and continues to fail the negative test cases. The bug may or may
not be the same as the original fault. Negative test cases are still considered
more likely to fail than to pass on mf .

3. Non-equivalent, not faulty mutant: the mutant no longer fails the neg-
ative test cases, and the program is considered to be �xed, with respect to
the test suite (the resulting mutant may cheat the test suite or introduce new
bugs, but neither of these are detectable using the original test suite alone).

As a result of the above, and the observation that modi�cations to faulty statements
within the program are more likely to yield a repair than changes to correct ones,
the number of passing negative test cases should be larger for mf than mc.

The second conjecture is that positive test cases are more likely to fail for mc than
formf . As with the �rst conjecture, this conjecture is based on the observation that
mc must exist in one of the two states:

1. Equivalent (neutral) mutant: the mutant retains the same semantics as the
original program, with respect to the test suite, and should therefore have the

102

4.1. BACKGROUND

same test case results.

2. Non-equivalent mutant: by de�nition, a non-equivalent mutant must fail
at least one of the positive test cases, thereby introducing a fault into the
program.

As a result of these two conjectures, and based upon observations, it is believed
that mutating the faulty statement is more likely to generate a (partial) �x, and that
mutating a correct statement is more likely to fail positive test cases. By generat-
ing mutants and observing their test case results, MUSE exploits these conjectures
to locate the source of the bug. MUSE incorporates this information into a new
suspiciousness metric µ, given in Equations 4.12 and 4.13 (with minor changes in
notation):

µ(s) =
1

|mut(s)|
∑

m∈mut(s)

µm(s) (4.12)

µm(s) =
|fP (s) ∩ pm|
|fP |

− α · |pP (s) ∩ fm|
|pP |

(4.13)

where s is a statement of P, fP (s) is the set of negative tests covering s, and pP (S)
is the set of positive tests covering s. mut(s) de�nes the set of all non-neutral mu-
tants of P with changes at s, {m1...mk}; note that neutral mutants are ignored, as
they do not provide useful information based on the underlying conjectures. For
each mutant mi ∈ mut(s), let fmi and pmi be the set of failing and passing tests
on mi, respectively. Importantly, MUSE discards all neutral mutants from consid-
eration, prior to calculating µ; these mutants are deemed to contain no relevant
information.

mum(s) is used to calculate the contribution of knowledge from a mutant’s test case
results, based on the conjectures. Its �rst term describes the proportion of negative
test cases that now pass on a mutant m, whilst its second term gives the propor-
tion of positive test cases that now fail on a mutant m. When mum(s) is summed
and averaged over mut(s), these terms become the probability of a change in test
case result (i.e., positive test failure or negative test success), re�ecting the intuition
behind MUSE. Passing of a negative test case will increase the suspiciousness of s,
whereas failing a positive test will decrease its suspiciousness.

As it is more likely that a positive test case will fail for m than a negative test case
will succeed, a weighting term α is introduced to balance these probabilities by
compensating for the di�erence in their averages. The equation for α is given in
Equation 4.14, where f2p and p2f describe the number of test case results which
change across all mutants—note that α does not require a priori knowledge of the
bug.

α =
f2p

|mut(P)| · |fP |
· |mut(P)| · |pP |

p2f
(4.14)

103

FAULT LOCALISATION

As a result of this balancing, when the second term is subtracted from the �rst
term, a baseline value of zero is produced. For the faulty statements, the �rst term
is expected to be higher, whilst the second term is expected to be lower than the
correct statements in P (w.r.t. the test suite).

Equipped with this suspiciousness metric, MUSE generates suspiciousness values
for each of the statements within P by following the steps below.

1. MUSE computes coverage information for P using a given test suite T , �nd-
ing the set of statements that are executed by the negative test cases, since
all of the (manifested) faults are guaranteed to be within this set. To calcu-
late coverage information, MUSE uses gcov. This decision restricts MUSE
from handling crashing programs, such as those with segmentation faults or
memory leaks. Note, this limitation is purely a technical one, which could be
overcome through the use of an alternative coverage monitoring tool. How-
ever, this decision also makes it unclear whether MUSE is equally as e�ective
for crashing bugs.

2. A set of mutants are then generated by mutating each of the candidate state-
ments identi�ed in the previous step. These mutants are created by generat-
ing a single mutant at each of its identi�ed mutation points using Proteum
[Maldonado et al., 2001].

3. From the test case outcomes of all mutants, MUSE proceeds to compute µ(s)
for each statement in the program.

To improve the e�ectiveness of MUSE in cases where mutants for a given statement
are absent, and to use existing spectrum-based fault localisation, Moon et al. [2014b]
introduce HybridMUSE. Given a set of suspiciousness values produced by MUSE,
µMUSE, and a set of suspiciousness values generated by an SBFL technique, µSBFL,
HybridMUSE combines these values for each statement, as illustrated by Equation
4.15:

µHybridMUSE(s) = norm(µMUSE, s) + norm(µSBFL, s) (4.15)

where norm(µ, s), described in Equation 4.16, is used to normalise a given suspi-
ciousness value such that the minimum value is set to zero, and the maximum is set
to one:

norm(µ, s) =
µ(s)−min(µ)

max(µ)−min(µ)
(4.16)

Across 51 faulty versions of 5 programs taken from the Software Infrastructure
Repository, Moon et al. [2014b] �nd that HybridMUSE is 4.08 times more precise
than MUSE, according to the EXAM metric (the fraction of statements that would
have to be considered until a fault is found, if one were to order all statements by
their suspiciousness). Moon et al. [2014b] speculate that the relative strength of

104

4.1. BACKGROUND

Sample EXAM Rank LIL

1% 6.20 123.50 6.26
10% 4.60 95.53 6.11
40% 2.79 61.21 5.96
70% 1.83 45.59 5.90

100% 1.65 41.60 5.86

Table 4.1: The average precision of HybridMUSE as its mutant sampling rate is
adjusted. Taken from [Moon et al., 2014b].

HybridMUSE over the standard form of MUSE is observed in cases where all mu-
tants at a faulty statement are discarded, causing those statements to be assigned a
suspiciousness of zero.

Interestingly, despite exhibiting a signi�cant improvement in precision—as mea-
sured by the EXAM score—Moon et al. [2014b] �nd that MUSE is a factor of 1.12
more precise than HybridMUSE when the LIL metric is used instead; the authors
choose to discount this result, given the improvements in EXAM. For the purposes
of automated program repair, however, this result may prove to be of greater impor-
tance. Moon et al. [2014b] conduct a preliminary study into the correlation between
EXAM and LIL and NCP (average number of candidate patches before a repair was
found) on a single automated repair benchmark, “look-utx-4.3”, using a randomly
generated test suite. On this single benchmark, they �nd that EXAM bears little
relation to NCP, but that LIL appears to correlate well.

Despite impressive gains in precision—as compared to SBFL techniques—bothMUSE
andHybridMUSE require a vast number of mutants to compute their suspiciousness
scores; a lengthy and expensive process. To investigate this further, Moon et al.
[2014b] measured the precision of HybridMUSE as the number of mutants sampled
at each statement was varied. The results of their investigation, listed in Table 4.1,
show a small improvement in LIL as the sample size is increased and a much larger
improvement in terms of EXAM and the rank of the faulty statement. At sample
sizes below 40%, HybridMUSE performs worse than Jaccard (LIL: 6.04), the best
performing SBFL technique. MUSE and HybridMUSE appear to be better suited to
aiding human-developers in determining the location of the fault than they are at
reducing the di�cult of automated program repair.

Metallaxis

Prior to the introduction of MUSE, Papadakis and Le Traon [2015] proposed an al-
ternative approach to Mutation Analysis Fault Localisation: Metallaxis. As with
MUSE, Metallaxis assigns a suspiciousness to each statement within the program
based on the test suite outcomes for a set of randomly generated mutants. Un-
like MUSE, Metallaxis explicitly assigns suspiciousness to individual mutants—

105

FAULT LOCALISATION

building on the intuition that mutants whose test suite outcomes are closest to those
the fault are likely to be co-located. Each killed mutant m (i.e., a mutant which fails
at least one test)1 is assigned a suspiciousness using the Ochia similarity metric—
a commonly used metric for spectrum-based fault localisation—given in Equation
4.17:2

µ(m) =
#Kn√

#K · (#Kp + #Kn)
=

#Kn

#K
(4.17)

whereK is the set of tests that killm (which may be composed of both positive and
negative tests), Kn is the set of (covered) negative tests that kill m, and Kp is the
set of (covered) positive tests that kill m.

Although MUSE does not explicitly compute suspiciousness values for its mutants,
one can view its summation terms as implicit mutant suspiciousness scores. Com-
paring MUSE with Metallaxis, one observes that Metallaxis reduces the suspi-
ciousness of mutants that are not killed by negative tests. In contrast, MUSE signi�-
cantly increases the suspiciousness of such mutants. It seems, therefore, that whilst
MUSE and Metallaxis share a similar high-level intuition—that mutants can be
used to expose unlocated bugs—they each operate under a fundamentally di�erent
set of assumptions: MUSE sees failing-to-passing behaviour as a sign of a partial re-
pair, whereas Metallaxis appears to treat it as a sign of over�tting. This di�erence
in assumptions raises the question: “How should the outcomes of negative tests be
treated?”

From the suspiciousness values for each mutant, Metallaxis assigns a suspicious-
ness value to each statement within the program, using the formula in Equation
4.18.

µ(s;M) =

{
maxm∈Ms µ(m) Ms 6= ∅
1.0 otherwise

(4.18)

Rather than computing the average of each of mutant at a given statement, Metallaxis
aggregates the suspiciousness of statement-mutants by computing their maximum.
An advantage of this approach—unmentioned by its authors—is that the cost of com-
puting suspiciousness values is reduced since values may only increase; there is no
need to gather full test suite results for statements which have already been assigned
the maximum suspiciousness. Thus, we may forgo the generation of mutants (for
the purposes of fault localisation) at statements covered exclusively by negative test
cases (since each µ(m) is guaranteed to be 1.0). Whilst this observation allows us

1Provided that one only generates mutants at statements that are covered by at least one negative
test case, then the only mutants that are not killed are (partial) repairs.

2Notation is changed slightly from its original form, to avoid confusion with similar spectrum-
based fault localisation terms. The original form of the equation simpli�es to the fraction of killed
tests that are negatives (since #Kp +#Kn = #K).

106

4.2. ANALYSIS

to reduce the cost of the fault localisation process, it fails to provide a means of
discriminating between such statements, unlike MUSE.

By using the maximum suspiciousness of a statement’s mutants, Metallaxis is ar-
guably more prone to the e�ects of outliers. For example, in the case that a neutral
mutant m—one which passes and fails the same test cases as the original, faulty
program—is generated at a statement s, µ(m) will go to 1.0, and by extension, µ(s)
will be assigned the maximum suspiciousness of 1.0. If most statements within the
program have neutral mutants, then this behaviour becomes troubling; Metallaxis
leaves us unable to discriminate between them. Given that previous research by
Schulte et al. [2013] showed that roughly a third of mutants within GenProg’s
search space are neutral, this problem may manifest in practice.

One can compare the behaviour ofMetallaxis to that ofMUSE by treating the inner
term of µMUSE as the suspiciousness of a particular mutant. From this perspective,
we notice di�ering behaviours and underlying assumptions in the way that MUSE
and Metallaxis aggregate mutant results, and how they treat failing-to-passing
test outcomes:

• According to Metallaxis, a statement is as suspicious as its most suspicious
mutant. This behaviour assumes that the search landscape is mostly com-
posed of non-neutral mutants. If the search space contains a large number of
neutral mutants [Schulte et al., 2013], Metallaxis assigns the maximum sus-
piciousness value to most statements. In contrast, MUSE actively discards its
neutral mutants and computes the suspiciousness of a statement as the aver-
age suspiciousness of its mutants, indicating a robustness to sampling noise.

• Whereas MUSE signi�cantly increases the suspiciousness of statements con-
taining mutants which pass previously failing test cases, Metallaxis implic-
itly decreases the suspiciousness of such statements. These behaviours high-
light a contradiction between the underlying assumptions of the techniques:
MUSE sees partial solutions as signs of a repair, whilst Metallaxis views
them as either irrelevant or the result of over�tting.

BothMetallaxis andMUSE have demonstrated signi�cant improvement to fault lo-
calisation accuracy but their evaluation has been limited to manually seeded faults in
small-to-medium sized programs, sourced from the Siemens [Hutchins et al., 1994]
and SIR [Do et al., 2005] datasets. Furthermore, in the evaluation of Metallaxis,
the EXAM metric was used to measure accuracy—a metric which has been shown to
be inappropriate for purposes of automated program repair [Qi et al., 2013].

4.2. Analysis

In this section, we explore the feasibility of using results of candidate patch evalua-
tions to improve the accuracy of fault localisation. To determine feasibility, we use

107

FAULT LOCALISATION

a collection of historical, real-world bug �xes to assess whether mutants at state-
ments where a repair was made exhibit di�erent test suite behaviour to those at
statements that were unchanged by the patch. In the context of automated pro-
gram repair, each mutant can be viewed as a candidate repair. Evidence of di�ering
test suite behaviours between the mutants of modi�ed and non-modi�ed statements
would suggest that it is possible to (help to) identify the locations in the program
at which a successful �x could be made. If no di�erence in test suite behaviour is
detected, it would suggest that the knowledge of the test outcomes for candidate
patches are not useful in improving the accuracy of fault localisation.

To focus our analysis, we use GenProg to generate candidate patches, but anticipate
the analysis results can generalise to any search-based repair technique that follows
a similar paradigm.

Speci�cally, this analysis answers the following questions:

• RQ1A: Do the solutions found by the search occur at the same statement that
was modi�ed by the programmer?

We ask this question to determine whether APR should restrict its attention to
the locations modi�ed by the programmer, rather than pursuing alien repairs
at other locations.

• RQ1B: Can statements that were modi�ed by the human be discriminated
from those that were not, on the basis of the passing-to-failing p2f rates of
their mutants?

• RQ1C: Can human-modi�ed statements be distinguished from
non-modi�ed statements, based on the failing-to-passing rates f2p of their
mutants?

We ask RQ1B and RQ1C to to assess the degree to which p2f and f2p con-
tribute to identifying suitable �x locations, if they do at all; previous work
has ignored the individual contributions of these parts [Moon et al., 2014a;
Papadakis and Le Traon, 2015].

• RQ1D: Are statements covered by the fewest number of positive test cases
the most likely to contain the fault?

We ask this question to determine whether this observation could be exploited
to improve o�ine fault localisation.

To answer these questions, we analyse test case results for a sample of single-edit
mutants taken from 28 bugs across 6 real-world C programs. 15 of these bugs are
arti�cial, injected into 3 small-to-medium programs, sourced from the Software In-
frastructure Repository [Do et al., 2005]—the same source of bugs used to evaluate
MUSE and Metallaxis. We include these bugs to determine whether GenProg’s
repair operators may be used to perform MBFL, rather than traditional mutation
testing operators used by existing approaches [Moon et al., 2014a; Papadakis and
Le Traon, 2015]. We supplement this dataset with 13 real-world bugs in 3 large-scale,

108

4.2. ANALYSIS

Program # Bugs KLOC Tests Arti�cial?

gzip 6 6 104 3

grep 2 10 146 3

sed 7 14 255 3

OpenSSL 5 248 77 7

Python 4 446 344 7

PHP 4 789 8597 7

Table 4.2: Details of the subjects we studied for our preliminary mutation analysis.
KLOC measures the number of thousands of lines of C code in the program, as
calculated by cloc. Tests states the average number of test cases used by bugs for
that program.

Instance Type: c4.large
CPU: Intel Xeon E5-2666 v3 (2 cores)
Base AMI: Amazon Linux, 64-bit (ami-0b33d91d)
RAM: 3.75 GB
Storage Type: io1
Storage Size: 8 GB (400 IOPs)
Cost: > $0.1/hr

Table 4.3: Speci�cations for Amazon EC2 instances used to perform mutation anal-
ysis on 15 arti�cal bugs.

real-world programs, to determine whether MBFL remains e�ective when applied
in the wild. We obtained these 13 bugs by manually searching for recent patches
within the version control histories of these projects. Table 4.2 provides a summary
of the programs we used for the study.

To collect the necessary data for the analysis, we �rst generated a list of all the
single-edit patches within GenProg’s search space, before randomly shu�ing that
list and evaluating as many patches as possible within a 12-hour window. This 12-
hour random walk was repeated for each of the bugs within the dataset.

For historical reasons, and given its similarity to traditional mutation testing oper-
ators, we also ensured that a deletion was attempted at each statement.3 In �tting
with our general methodology, outlined in Chapter 3, each bug was analysed using
RepairBox. We used a C4.Large instance on Amazon EC2, described in Table 4.3,
to collect data for the 15 arti�cial bugs, and a DS1_V2 instance on Microsoft Azure,
described in Table 4.4, for the 13 real-world bugs.

To �t as many patch evaluations as possible the time window allotted to each ran-
dom walk, we performed a number of optimisations to the search process, discussed

3In earlier experiments, using publicly available bug scenarios with weak test harnesses, we found
that the deletion operator was highly e�ective at pruning the fault localisation.

109

FAULT LOCALISATION

Instance Type: DS1_V2
CPU: Intel Xeon E5-2673 v3 (1 core)
Host OS: Ubuntu Server 16.04 LTS (64-bit)
Kernel: 4.4.0-77-generic
Docker: 1.12.6, build 78d1802
RAM: 3.5 GB
Storage: 7 GB (3200 IOPs)
Cost: $0.249/hr

Table 4.4: Speci�cations of the Microsoft Azure compute instances used to perform
analysis on 13 real-world bugs.

below.

• By limiting our attention to single-edit patches, we were able to exploit the
assumption that the �x requires only a single edit by restricting our attention
to the sub-set of statements that are covered by all negative test cases as can-
didates for repair, rather than considering those that are covered by a sub-set
of the negative tests.

• For each mutant, we restricted its test suite evaluation to the sub-set of tests
whose values may have changed as a result of the mutation. To determine
this, we found the sub-set of tests that covered the single statement modi�ed
by the mutant. Whilst dynamic analysis techniques could be used to further
reduce the evaluation e�ort required, we believe their associated costs are
likely to outweigh any potential gains.

• Additionally, we implemented a form of parallel, asynchronous test case eval-
uation, which reduces CPU idle time, and improves throughput and e�ciency.

• We also used a number of weak equivalency checking techniques introduced
by Weimer et al. [2013] in AE, including liveness and scope checking, and the
removal of duplicate statements from the donor pool.

Results

A brief summary of the results of the mutation analysis is given in Table 4.5. From
inspection of these results, we observe that most (compiling) mutants exhibit an
all-or-nothing behaviour: either their test outcomes remain unchanged (shown in
the “% Neutral” column), or all of their tests are failed (given by the “% Lethal”
column). We also observe low sample rates (< 1 mutant per suspicious statement)
for most Python and PHP bug scenarios. This is due to the substantial overheads
involved in compiling mutants, and for statements covered by a large number of
tests, the signi�cant costs of evaluating hundreds or thousands of test cases for each
mutant.

110

4.2. ANALYSIS

Scenario % Compiling % Neutral % Lethal Mutants Sample Rate

mmb-openssl-0a2dcb6 100.00 14.06 50.66 377 2.48
mmb-openssl-4880672 90.72 22.27 35.51 1971 4.82
mmb-openssl-6979583 99.18 26.62 51.23 1097 13.06
mmb-openssl-8e3854a 93.66 38.14 25.59 3028 4.69
mmb-openssl-eddef30 100.00 55.97 16.84 2898 80.50
mmb-php-01c028a 96.43 7.14 0.00 28 0.06
mmb-php-11bdb85 96.88 25.00 0.00 32 0.07
mmb-php-1d6b3f1 88.66 14.57 25.78 741 8.72
mmb-php-9fb92ee 100.00 28.11 37.33 217 0.51
mmb-python-6c3d527 84.66 64.29 13.76 378 0.46
mmb-python-a93342b 81.51 53.42 0.68 146 0.37
mmb-python-b2f3c23 81.83 45.67 14.33 600 3.03
mmb-python-f584aba 32.74 10.50 5.05 733 0.71

sir-grep-v2-DG_1 98.73 39.17 35.99 628 1.00
sir-grep-v3-DG_3 67.06 31.92 31.19 2353 10.14
sir-gzip-v1-KL_2 91.41 23.60 48.79 1898 10.20
sir-gzip-v1-KP_1 92.09 41.11 36.77 2301 11.22
sir-gzip-v1-TW_3 91.34 27.85 40.57 2068 13.34
sir-gzip-v4-KL_1 91.27 43.17 28.83 2886 13.49
sir-gzip-v5-KL_1 90.26 66.75 16.96 6437 16.98
sir-gzip-v5-KL_8 98.68 24.01 31.26 1062 1.05
sir-sed-v2-AG_17 85.77 23.68 30.67 1630 1.52
sir-sed-v2-AG_19 53.50 8.73 19.93 3011 22.47
sir-sed-v3-AG_11 78.79 24.74 33.81 2579 7.39
sir-sed-v3-AG_15 80.71 24.92 26.02 1545 2.95
sir-sed-v3-AG_17 67.57 16.14 27.40 1332 3.95
sir-sed-v3-AG_18 67.85 16.92 24.13 1235 3.48
sir-sed-v3-AG_6 77.06 23.40 31.17 2615 5.56

84.94 30.07 26.44 1637 8.72

Table 4.5: A summary of the mutation analysis results for each bug scenario.
% Compiling speci�es the percentage of mutants that successfully compiled.
% Neutral describes the percentage of (compiling) mutants that had no e�ect on
the outcome of the tests. % Lethal describes the percentage of (compiling) mutants
(covering at least one positive test) that failed all of their covered tests. Mutants
speci�es the number of mutants generated within the 12-hour random walk. Sam-
ple Rate gives the average number of mutants per suspicious statement.

111

FAULT LOCALISATION

Faulty Correct
0.0

0.2

0.4

0.6

0.8

1.0

p2
f

Mean p2f of all mutants at a given statement

Figure 4.3: Comparing the mean pass-to-failure rate for applicable mutants, we ob-
serve di�erent, but overlapping distributions for correct statements and faulty state-
ments (KS2 = 0.301; p = 0.003, A12 = 0.679 [medium e�ect]).

RQ1A:Do the solutions found by the search occur at the same statement

that was modi�ed by the programmer?

Across the random walk for each of the 28 bugs, we found �xes at a total of 48 dif-
ferent statements. Only 5 of these 48 statements were also modi�ed by the original
patch. This �nding suggests that GenProg is crafting repairs unlike those that a
human would make, supporting arguments made by Monperrus [2014] that auto-
mated repair should consider alien repairs, rather than restricting itself to producing
human-like repairs.

RQ1B: Can statements that were modi�ed by the human be discrimi-

nated from those that were not, on the basis of the passing-to-failing

p2f rates of their mutants?

In line with our expectations and previous �ndings, we observe di�erent mean pass-
to-failure rates across all applicable mutants between the statements we assumed to
be faulty and those we assumed to be correct, as shown in Figure 4.3. To avoid
misleading results, only mutants that successfully compile and cover at least one
positive test case are considered applicable mutants. Using a two-way Kolmogorov-
Smirnov test, we reject the null hypothesis (with p < 0.05) that the samples for
the faulty and correct statements are drawn from the same distribution. Between
the p2f distributions for correct and faulty statements, we �nd an e�ect size of
0.679, indicating that correct statements tend to have higher p2f values than faulty
statements. Details on the statistics used in this chapter may be found in Section
3.4.4.

The distributions suggest that faulty statements tend to have a lower pass-to-failure

112

4.2. ANALYSIS

Faulty Correct
0.0

0.2

0.4

0.6

0.8

1.0
f2

p
Mean f2p of all mutants at a given statement

Faulty Correct
0.0

0.2

0.4

0.6

0.8

1.0

f2
p

(without outliers)

Figure 4.4: We observe similar distributions of mean f2p values for faulty and cor-
rect statements (KS2 = 0.185; p = 0.177). In both cases, more than half of the
mutants at each statement did not pass any of the previously failing tests.

rate than those that are correct, supporting the intuition that modi�cations to a
correct statement are likely to result in a greater degree of functionality loss. In
answer to RQ1B, these results suggest that p2f information can be used to partially
discriminate between statements that were modi�ed by the programmer and those
that were not. Thus, the results provide promise for the use of GenProg’s mutation
operators to localise the source of faults over the course of the search.

RQ1C: Can human-modi�ed statements be distinguished from

non-modi�ed statements, based on the failing-to-passing rates f2p of

their mutants?

To answer this question, we �rst removed all non-compiling mutants from con-
sideration, before also removing all acceptable solutions that were found during
the random walk; this puts the f2p values into the context of an ongoing search,
allowing us to observe the most complete f2p distributions possible without hav-
ing yet found a solution. We then compared the mean f2p of all mutants for both
statements that were modi�ed by the human and those that were not, illustrated in
Figure 4.4.

Results show that mean f2p was zero for the majority of statements, regardless
of whether they were modi�ed by the human. On closer inspection, we �nd that
only 2.09% of mutants have any impact on the outcomes of the negative tests (i.e.,
97.91% of mutants fail all negative tests). These �ndings suggest that f2p informa-
tion may not be particularly e�ective in distinguishing between faulty and correct
statements.

RQ1D: Are statements covered by the fewest number of positive test

cases the most likely to contain the fault?

In restricting the search to only those statements covered by all negative test cases,
existing spectrum-based fault localisation techniques become partially redundant,

113

FAULT LOCALISATION

as the contribution of the en variable is zero. Instead, it may be preferable to quan-
tify statement suspiciousness using a function of the number of executed and non-
executed passing test cases. Thus, we used the results of the analysis to explore
how many passing test cases were executed at each statement with an acceptable
repair, and whether faulty statements covered fewer positive tests. Accounting for
the varying sizes of the test suites, we looked at the fraction of the test suite covered
by a faulty statement, or passing test coverage. We computed an adjusted coverage
level for each of the bugs, where the minimum number of positive tests covered by
any statement under consideration was negated from the number of positive tests
covered by a given statement. This allows the levels of coverage to be compared,
relative to other candidate statements in the program.

Measuring the adjusted coverage of each bug scenario, we �nd that 90% are cov-
ered by fewer than 2% of the positive test cases, mirroring the intuition behind the
original suspiciousness metric used in GenProg.

4.3. Approach

Using the knowledge gained from our mutation analysis, we propose and evalu-
ate two fault localisation strategies for search-based program repair, which may be
aggregated. For our purposes, we aggregate localisations by computing product
of their suspiciousness values, although more intricate methods may yield better
results. To use these layers in a noisy, online context, we ensure that each is numer-
ically stable and that none assigns a suspiciousness of zero to any statement covered
by a negative test case. We consider:

Coverage: based on our �ndings regarding the (adjusted) number of positive test
cases covering human-repaired statements, this layer, described by Equation 4.19,
creates a localisation that results in a 90% probability that a statement with less than
2% adjusted coverage will be selected, and a 10% probability that a statement with
a greater level of coverage will be chosen.

µCov(s) =

{
x AdjustedCoverage(s) ≤ 0.02

y otherwise
(4.19)

The adjusted coverage of a statement is computed using the formulae given in Equa-
tions 4.20 and 4.21:

AdjustedCoverage(s) =
|PositiveTests(s)| −MinCoverage

|PositiveTests| (4.20)

MinCoverage = min
s∈S
|PositiveTests(s)| (4.21)

114

4.3. APPROACH

where |PositiveTests(s)| speci�es the number of passing test cases covering a given
statement, and |PositiveTests| speci�es the number of passing tests overall.

Let the statements that are at or below the adjusted coverage threshold be be given
by the setX , and let Y be the set of all other candidate statements, x and y are thus
implicitly given by Equations 4.22 and 4.23.

∑
s∈X

µCov(s) = 0.90 (4.22)

∑
s∈Y

µCov(s) = 0.10 (4.23)

Pass-to-Fail: This layer, described in Equation 4.24, assigns values between zero
and one to each statement, based on the pass-to-fail rates p2f of its mutants:

µp2f (s) =
1

|mutants(s)|+ 1
·

1 +
∑

m∈mutants(s)

(1− p2fm)

 (4.24)

Evaluation

We now investigate e�ectiveness of a fault localisation that combines the proposed
layer. To assess the e�ectiveness of each candidate fault localisation technique, we
use the mutants of the analysis—excluding any solutions, to avoid potential biases—
to generate a set of suspiciousness values µ, for each of the programs. We then
measure the accuracy of a fault localisation technique by the probability p(µ) of
selecting a statement that contains a �x found during the random walk, as described
in Equation 4.25.4

p(µ) =
∑

s∈FixedStmts

µ(s)∑
s′∈S µ(s′)

(4.25)

Table 4.6 shows results performed across the 11 bugs for which solutions were found
during the random walk.

We observe that µCov is more accurate than GenProg’s standard fault localisation
µGP in 6 out of the 11 cases, marginally worse in 1 case, and considerably less
accurate for the remaining 4 cases. When used in isolation, µp2f is beaten by µGP
for 8 out of the 11 bugs, and for the remaining 3 bugs, µp2f only provides a marginal
improvement in accuracy. This result indicates that passing-to-failing information,
used alone, is not particularly e�ective at identifying suitable �x locations.

4Note, we do not measure how well these techniques localise the statement modi�ed in the human
repair, since the patterns observed in this data were used to design these techniques.

115

FAULT LOCALISATION

Scenario p(µGP) p(µCov) p(µp2f) p(µCov × µp2f)

ct-openssl-0a2dcb6 1.227 0.142 0.907 0.046
ct-openssl-6979583 37.681 75.256 15.958 79.753
ct-openssl-8e3854a 0.714 0.106 1.005 0.100
ct-openssl-eddef30 66.667 76.036 45.920 77.583
sir-gzip-v1-KP_1 6.631 4.455 4.673 6.485
sir-gzip-v1-TW_3 9.202 14.211 4.689 15.324
sir-gzip-v4-KL_1 2.685 2.727 1.724 3.083
sir-gzip-v5-KL_1 0.400 0.326 0.360 0.394
sir-gzip-v5-KL_8 2.169 6.585 0.338 4.672
sir-sed-v2-AG_17 0.185 0.019 0.211 0.023
sir-sed-v3-AG_11 0.573 6.953 0.606 3.086

Table 4.6: Comparison of fault localisation accuracies achieved by di�erent ap-
proaches, where accuracy is measured by the probability of sampling a statement
containing a �x from the resulting distribution. Results are given as percentages.

When µCov and µp2f are naively aggregated by computing their product, the re-
sulting fault localisation is more accurate than µGP for 6 out of 11 bugs, marginally
worse for 1, and considerably worse for 4. If the online modi�cations to µp2f are
removed, and 1 − p2f(s) is used to compute suspiciousness instead, the resulting
localisation outperforms GenProg’s fault localisation in all cases.

We also experimented with various ways of incorporating f2p information into
the fault localisation, but found the approach either attained near-perfect accuracy
(since the only mutants to pass any negative tests were at statements where a solu-
tion was found), or substantially worse accuracy (since all mutants other than the
solutions at the faulty statements failed all of the negative tests). A larger table of
results can be found in Appendix C.

4.4. Discussion & Conclusion

From the results of our evaluation, we observe relatively little bene�t in incorpo-
rating information learned from the evaluation of candidate patches into the fault
localisation, in comparison to previous attempts to use mutation analysis to locate
faults. We believe there may be a number of reasons for this result:

• Lack of mutants: for a number of bug scenarios, we found that excessively
long test suite evaluation and compilation times prevented the search from
producing an adequate sample of mutants at each statement.

• Lack of passing test coverage: in cases where a large of statements are cov-
ered by no passing tests, all of these statements will be assigned a suspicious-

116

4.4. DISCUSSION & CONCLUSION

ness score of 1.0 by µP2F (s). Consequently, this layer will either suppress
the �xed statement, if it is covered by any positive test cases, or it will fail to
identify it amongst the many statements without positive test coverage.

• All-or-nothing f2p response: within GenProg’s search space, we observe
erratic negative test case behaviour. In some cases, the only statements to pass
a negative test case were those that could be repaired. In other cases, negative
test case passes were much more common, whilst no mutants at the statement
that was repaired (excluding the solutions) passed any negative tests. If one
knew which type of f2p response one was dealing with, a more accurate fault
localisation might be possible. In the future, we plan to explore whether the
rarity of negative test passes might be used to determine whether a given
failing-to-passing event is a coincidence, or indicative of a potential repair at
that statement.

• Coarsely-grained mutation operators: one explanation for the relative
lack of success in incorporating the results of the mutation analysis into the
fault localisation may be due to the coarsely-grained nature of the repair op-
erators within GenProg’s search space. With such actions, it may be di�cult
to expose subtle bugs within the statement that might otherwise be identi�ed
using �ner-grained mutation testing operators. In our preliminary analysis,
we �nd that most repairs tend to either have no e�ect on the outcomes of
the test suite, or to cause all of their covering tests to fail; this all-or-nothing
behaviour may be a consequence of the granularity of the search operators.

• Combining information: to combine each of the proposed layers of fault
localisation from our evaluation, we computed the product of each of the lay-
ers; a necessarily arbitrary decision. A more meaningful, e�ective way of
combining information from multiple sources and how to deal with con�ict-
ing or corroborating suspicious values is not immediately clear.

Going forward, to translate the potential of mutation analysis approaches such as
MUSE into e�ciency gains in automated program repair, we intend to explore the
following:

• Richer repair models: in an e�ort to avoid the all-or-nothing behaviour ex-
hibited by mutants generated using GenProg’s coarsely-grained statement-
level operators, we intend to explore the utility of lower-level repair operators
including, but not limited to, those traditionally used within mutation testing.
Beyond the use of mutation testing operators, we intend to explore whether
expression-level operators, such as the replacement of the LHS or RHS of an
assignment, or the modi�cation of function call parameters, may be used to
predict the location of the fault.

• Shape prediction: in addition to investigating whether mutants can be used
to predict the location of the fault, we are interested to see whether the results
of particular types of mutants can be used to re�ne suspiciousness beyond the
level of the statement, and if they can be used to predict the type of repair that

117

FAULT LOCALISATION

might be needed (for instance, if replacing an if condition appears to have no
e�ect, that might suggest that a replacement condition is needed).

• Ensemble learning: rather than combining fault localisation layers by tak-
ing their product, or using a simple weighted average, we may see better
results—when using a di�erent model—if ensemble learning techniques are
used to �nd more e�ective ways of combining these multiple sources of in-
formation.

In conclusion, we �nd that mutation analysis appears to o�er little potential for
online fault localisation within GenProg’s search space. From observation of the
mutants, we see that GenProg exhibits an all-or-nothing landscape, where most
edits are either neutral or fail all of their covering tests. Given the previous success of
Metallaxis and MUSE, we believe that this all-or-nothing behaviour may be partly
responsible for the lack of improvement. Alternatively, it may be that the results
observed by Metallaxis and MUSE fail to scale to large real-world programs. In
future work, we intend to investigate the assumptions behind these techniques more
deeply.

To bene�t from the knowledge of its mutants test case results, we believe a set of
more �nely grained mutation operators are required; a requirement that will most
likely allow a larger number of bugs to be solved at the same time.

118

CHAPTER 5

Repair Model

Motivated by our �ndings and the �ndings of others—that the statement-level repair
model used by GenProg is ine�ective at �nding repairs—in this chapter we conduct
an empirical study of bugs in real-world C programs to determine a more e�ective
repair model. Speci�cally, we explore the viability of extending the ideas of plastic
surgery—using code from existing sources to craft the materials necessary for a
repair—beyond the level of statements, and to a larger set of richer, more granular
changes, capable of �xing a greater number of bugs.

Using a new bug �x mining tool, BugHunter, we automatically identify bug �xing
commits within Git repositories, before extracting instances of AST-level repair ac-
tions and collecting a pool of donor code snippets from the program. Equipped with
this information, we determine the fraction of bug �xes which involve a particular
repair action, and the fraction of repair action instances that can be grafted [Barr
et al., 2014] from existing code within the program. In an e�ort to reduce the search
space, and backed by the �ndings of previous studies regarding the e�ectiveness of
plastic surgery, we limit the membership of the donor code pool to snippets taken
from the �le where the �x occurred. To avoid the rejection of potential snippets due
to di�erently labelled variables, we also explore the e�ectiveness of plastic surgery
when such labels are removed; we refer to the labelled and unlabelled forms of the
donor pool as the concrete and abstract donor pools, respectively.

From analysis of the results, we �nd that more granular repair actions, at and below
the level of statements, are better suited to plastic surgery than more block-level
changes. By removing labels from donor code snippets and treating them as tem-
plates, we observe a substantial increase in graftability, rising from 0–58% to 16–94%.
To �x a larger number of bugs, we suggest incorporating a sub-set of the most fre-
quent repair actions into the repair model, and to use an abstract donor pool to craft
repairs.

The contributions of this chapter are as follows:

• We present BugHunter, a repair action mining tool, capable of identifying
bug �xing commits within Git repositories and discovering potential instances
of automated repair actions at the AST-level.

• We build upon previous de�nitions of repairmodels [Martinez and Monperrus,
2013] and provide inference rules for a set of repair actions, used to perform
the study.

• We examine the frequency of 23 repair actions, inspired by repair models used
within existing repair techniques, across 10,000 identi�ed bug �xes in 200

119

REPAIR MODEL

open-source C projects.

• We determine the graftability [Barr et al., 2014] of each of these repair actions
within a set of labelled and unlabelled donor code pools.

• From the observed frequencies and graftabilities of repair actions and donor
code pools, we make a number of suggestions for constructing a future repair
model, capable of addressing a greater number of bugs.

The rest of this chapter is structured as follows: Section 5.1 gives a brief review of
the related related literature. Section 5.2 elaborates on the motivation of this study
and outlines our research questions. Section 5.3 discusses our methodology; Section
5.4 expands upon the de�nition of repair models and provides descriptions, in the
form of inference rules, for each of the repair actions studied. Section 5.5 outlines
our approach to mining repair action instances from real-world software projects.
Section 5.6 presents and discusses the results of our study. Finally, Section 5.7 sum-
marises our �ndings, provides suggestions for the construction of more e�ective
repair models, and outlines future directions for research.

5.1. Related Work

In this section, we brie�y discuss previous research of relevance to repair models
and plastic surgery, as well as highlighting where our study di�ers and builds upon
this body of work.

The Plastic Surgery Hypothesis

Barr et al. [2014] summarise the “plastic surgery hypothesis” as follows:

Changes to a codebase contain snippets that already exist in the codebase
at the time of the change, and these snippets can be e�ciently found and
exploited.

The plastic surgery hypothesis underlies various genetic-programming-based ap-
proaches to automated program repair, optimisation, and improvement, all of which
use existing code to �nd solutions.

Given this de�nition, Barr et al. [2014] break down this hypothesis into two assump-
tions: (1) changes to the program are repetitive, relative to their parent, and that (2)
this repetitiveness may be e�ciently exploited to construct those changes. In par-
ticular, techniques such as GenProg rely on the existence of donor snippets within
the current, buggy form of the program. To test the �rst assumption, they measure
the graftability of 15,273 commits, taken from several large-scale Java projects. The
graftability of a change is de�ned as the number of its snippets for which a matching
snippet can be found within the search space. For the purposes of the study, source

120

5.1. RELATED WORK

code lines (with whitespace removed), rather than AST-level entities, are treated as
snippets. Barr et al. [2014] measure this quantity across three di�erent search spaces,
each containing snippets taken from the following sources, respectively:

• The parent of the change

• All non-parental ancestors of the change

• The most recent version of a foreign software project

To test the validity of the second assumption—that the space of donor snippets can
be e�ciently explored—Barr et al. [2014] also measure the density of matching snip-
pets within each space.

From the results of their analysis, Barr et al. [2014] found that, in most cases, donor
grafts could be found within the current version of the program and that rarely was
it necessary to search non-parental ancestors for the graft. Moreover, 30% of grafts
could be found within the same �le at which the human-written change occurred.
These results support both the plastic surgery hypothesis and GenProg’s interpre-
tation of that hypothesis: restricting the attention of the search to snippets within
the current versions of the faulty versions of the �le allows a large number of grafts
to be found much more e�ciently.

Our study builds upon the work by Barr et al. [2014] by investigating redundancy
at the level of program repair actions, rather than at the level of source code lines.
We choose to study source code redundancy within the context of particular repair
actions since this allows us to more accurately determine the e�ectiveness of plastic
surgery when applied to program repair.

Empirical Inquiry into Redundancy Assumptions of APR

Martinez et al. [2014] investigate the underlying assumption of plastic-surgery driven
APR techniques, such as GenProg, PAR, and SearchRepair: that the ingredients
used by a �x already exist within the program. To investigate this assumption, the
authors examine six open-source Java projects and determine the fraction of (ver-
sion control) commits—including those which do not pertain to bug �xes—that are
“temporally redundant”. A commit is deemed temporally redundant if it can be
composed in its entirety from code introduced by previous commits. The authors
measure temporal redundancy at both the line-level and token-level, and within
the same �le (termed local temporal redundancy) and across all �les (termed global

temporal redundancy).

The results of the study demonstrate a stark contrast in temporal redundancy at the
line-level and token-level: Between 2–17% of commits are temporally redundant
at the line-level, whereas 8–52% are temporally redundant at the token-level. This
�nding suggests that more granular changes to the program are easier to compose
from previous versions of the program, although this trade-o� comes at the cost of
a signi�cantly increased search space.

121

REPAIR MODEL

From analysis of global and local redundancy, the authors �nd that between 8–
29% of tokens can be found within previous versions of the same �le, compared
to 31–52% across previous versions all �les. Importantly, the size of the local pool
was between two-to-three orders of magnitude smaller than the global pool. The
cost e�ectiveness of searching the donor pool lends support to GenProg’s decision
to restrict the composition of its donor statements to those within the �les under
repair.

Our study di�ers from that conducted by Martinez et al. [2014] in two important
aspects: Firstly, we focus our attention on the e�ectiveness of plastic surgery within
C programs, rather than Java programs. Secondly, we measure redundancy within
the context of concrete repair actions, rather than generically measuring it at the
line- or statement-level. For instance, we determine the graftability of a “Replace If
Guard” action by measuring redundancy at an expression level.

Mining Software Repair Models

Martinez and Monperrus [2013] conduct an empirical study of the frequency of 41
di�erent AST-level repair actions within real-world bug �xes in Java programs, and
argue that not all probabilistic repair models are equally e�ective. As the dataset
for their analysis, the authors automatically identify the sub-set of bug �xes in the
CVS-Vintage dataset [Monperrus and Martinez, 2012]: a dataset containing 89,993
source-code versioning transactions across 14 open-source Java programs. To �nd
AST-level changes for each �x, they employ ChangeDistiller [Gall et al., 2009], an
AST di�erencing tool which describes modi�cations to ASTs using 41 di�erent types
of changes (e.g., “Statement Insertion”, “Statement Update”, “Statement Deletion”,
“Addition of final to class declaration”).

Martinez and Monperrus [2013] look at the di�erent outcomes produced by using
di�erent methods of bug identi�cation. They �nd that the number of source code
changes is a good predictor of whether the changes within that transaction di�er
to those of normal software evolution; transactions with fewer changes tend to be
the most di�erent. In contrast, when transactions were selected purely based on
the presence of indicators (e.g., “bug” or “�x”) within their associated messages, the
observed distribution of repair action frequencies was almost identical to the distri-
bution across all transactions, suggesting such measures are ine�ective at isolating
�xes to the source code.

When considering the set of transactions that contain only a single change—as re-
ported by ChangeDistiller—the top �ve change types were as follows: Statement
Update (38%), Add Function (14%), Condition Change (13%), Statement Insertion
(12%), Statement Deletion (6%). Between them, these change types account for 83%
of all changes.

The focus of Martinez and Monperrus [2013]’s study is on the frequency of partic-
ular repair actions within Java projects. In contrast, although we also measure the

122

5.1. RELATED WORK

frequency of repair actions—albeit it for C—our study is primarily focused on the
e�ectiveness of plastic surgery in the context of APR.

Critical Review of PAR

As an alternative to GenProg’s coarsely-grained repair model, Kim et al. [2013]
propose a hand-crafted repair model, based on frequently observed bug �x patterns
(e.g., insertion of a null check). They incorporate this repair model into PAR, an
evolutionary program repair technique aimed at repairing Java bugs. Compared to
an implementation of GenProg for Java, PAR was able repair more bugs (27 out
of 119, vs. 16). The authors also demonstrate the acceptability of PAR’s patches
through the use of a human study.

Despite achieving impressive results—and an ACM SIGSOFT Distinguished Paper

Award—both PAR and the methodology used in its evaluation have since been the
subject of criticism by Monperrus [2014]. This criticism has focused on both the
unbalanced composition of the bug scenario benchmark used in the evaluation, and
the methodology used to conduct the human study. The latter is of relevance to this
study. Principally, Monperrus [2014] highlights potential biases within the human
study, which may lead to participants to judge the correctness of a patch based on
its visual similarity to human-repaired bug �xes, rather than its semantics. He ar-
gues that con�ating correctness with appearance may unfairly lead to the dismissal
of more alien-looking but otherwise correct patches.

In this study, we estimate the utility of a repair action (i.e., its ability to generate
repairs) by its frequency within a corpus of mined human-written bug �xes. In
practice, this decision may not accurately re�ect the utility of some repair actions.
(e.g., it may be possible to �x a bug using a certain repair action, but such an action is
unlikely to be performed by a human-programmer, owing to its aesthetics or other
such non-functional properties.) Nonetheless, our results provide a reasonable ap-
proximation of utility. For a more detail discussion of both PAR and its critique, see
Section 2.2.5.

Bug Fix Patterns in Java

In an e�ort towards realising a more e�ective repair model for Java programs, Soto
et al. [2016] use software repository mining to determine the frequency—and to
some extent, the composition—of certain bug �x patterns within human-written
repairs for Java. As a corpus for their study, the authors use the publicly available
September 2015/GitHub dataset, provided by Boa [Dyer et al., 2013], containing 4.5
million identi�ed bug �xes in over 500,000 Java projects.

As the �rst part of their study, Soto et al. [2016] assess how many �les are changed
by each �x, where �le insertions, deletions and modi�cations are all considered to be
changes. Across all �les types—including non-source code �les—the authors observe

123

REPAIR MODEL

a median of 2 changes, and a surprisingly high mean of 11.3 changes, suggesting
a long-tailed distribution. When only Java source code �les are considered, the
authors �nd that each bug �x changes a mean of 4.47 �les—the median number
of changes is omitted from the paper. Although this adjusted mean is still high,
the relatively low—and more relevant—median suggests that most bug �xes involve
changes to two �les or fewer.

After investigating the number of �les changed by each bug �x, Soto et al. [2016]
look into the mean number of class, method, �eld, and variable introductions—high-
level changes that are currently beyond the scope of all APR repair models. They
�nd that, on average, each �x introduces 0.16 classes, 0.69 methods, 1.32 �elds, and
0.20 variables (these �gures fail to account for test �xtures, and should be consid-
ered an overestimate). Based on these �ndings, Soto et al. [2016] advocate for the
inclusion of property introduction into (Java) repair models. For two reasons, we do
not agree with this conclusion, nor with the methodology used to reach it:

• Within the context of learning suitable models for automated program re-
pair, it does not make sense to base one’s decisions on the mean number of
introductions. This statistic is more susceptible to noise within the dataset—
stemming from a risk of misclassi�cation—and the e�ects of large-scale refac-
torings; Soto et al. [2016] do not report the standard deviation or interquartile
range to determine this risk. Instead, one should investigate the more sta-
tistically robust median, which is better suited to asking the (more relevant)
question: “How many properties do repairs tend to introduce?”

• Not all modi�cations made by developers are strictly necessary to �x the bug.
In the process of bug �xing, developers will sometimes refactor the original
code to improve its maintainability and reduce its complexity.

Following an investigation of these source-level feature introductions, the authors
attempt to determine the frequency of PAR’s repair templates within the corpus.
Using Boa, Soto et al. [2016] look for instances of eight of the ten templates used
by PAR: neither “Class Cast Checker” or “Expression Changer” patterns are inves-
tigated, due to technical limitations in Boa.

Under the most lenient assumption, that no two of PAR’s patterns co-occur within
a bug �x, these templates are found to cover 14.78% of buggy �les. In contrast, in
the dataset used to evaluate the e�ectiveness of PAR, these repair templates cover
30% of the corpus. This discrepancy suggests that the dataset used to evaluate PAR
was unrepresentative; bugs that are �xable by PAR are encountered twice as often
in PAR’s dataset than they are in general.

Finally, the authors turn their attention to the statement-level repair model used
by GenProg. After mining instances of GenProg’s operators within the corpus,
the authors determine the likelihood of a statement of a given type being replaced
by that of another type. The results of this analysis demonstrate a non-uniform
distribution, and that certain kinds of statement are highly unlikely to be used as a
replacement (e.g., TypeDecl, Label, Do, Assert). The analysis exclusively considers

124

5.1. RELATED WORK

cases where a statement is replaced by a statement of another type. It may be more
informative to the construction of a repair model to determine how often a statement
is replaced by another of the same type.

From observations of the mined Delete and Insert operators, for each kind of state-
ment, the authors determine the fraction of �xes that involve deleting, inserting
or otherwise leave statements of that kind unchanged. The most frequently mod-
i�ed kind of statement, in terms of both insertion and deletion, was found to be
Expression statements (e.g., function calls, assignments, casts). If, Return and For
statements insertions and deletions were all found to occur in at least 15% of bug
�xes. TypeDeclaration and Assert statements were found to have the lowest rates
of insertion and deletion.

Although our study shares a similar motivation to that of Soto et al. [2016]’s—to
�nd a more e�ective repair model to reduce the cost of APR—it aims to increase our
understanding of repair models by considering the frequency of repair actions and
their associated graftabilities.

Repair Quality

Recent studies by Qi et al. [2015] and Smith et al. [2015] demonstrate the tendency of
APR techniques to yield plausible but incorrect patches when used with inadequate
test suites. Qi et al. [2015] showed that the all of the �xes generated by GenProg
that were reported in [Le Goues et al., 2012a] were either the result of over�tting,
or could be realised through code deletion alone. This �nding raises questions re-
garding the true e�ectiveness of GenProg’s repair model. Firstly, it causes us to ask:
“Are GenProg’s statement-level repair actions su�ciently expressive to repair most
bugs?” Secondly, it leads us to the question: “Do GenProg’s assumptions regarding
redundancy—i.e., that the materials required for the repair can be found within the
same �le as the fault—hold in practice?” The questions raised by this study serve as
one of the driving motivations behind this study. By observing a large number of
historical bug �xes, we hope to answer both of them.

For a more in-depth discussion of the issues of repair quality raised by Qi et al.
[2015] and Smith et al. [2015], see Section 3.2.1.

Anti-Pattern Avoidance

To improve the quality of patches produced by existing repair techniques (speci�-
cally, GenProg and SPR), Tan et al. [2016] take an orthogonal approach to the prob-
lem by introducing the notion of anti-patterns into the search space. Anti-patterns
are used to actively prune patches whose resulting changes to the control-�ow graph
of the program are deemed likely to yield an incorrect or incomplete program ac-
cording to a set of heuristics. Each of the seven hand-crafted anti-patterns are brie�y
outlined below:

125

REPAIR MODEL

• A1 - Anti-delete CFG exit node: prevents the removal of return statements,
exit calls, assertions, and calls to functions containing the word “error”.

• A2 - Anti-delete Control Statement: prevents the deletion of control-�ow
statements (e.g., if-statements, switch-statements and loops).

• A3 -Anti-delete Single-statementCFG: prevents statement deletion within
CFG nodes that contain only a single statement.

• A4 - Anti-delete Set-Before-If: prohibits the deletion of a variable de�ni-
tion if that de�nition is immediately followed by an if-statement using the
de�ned variable.

• A5 - Anti-delete Loop-Counter Update: forbids the deletion of an assign-
ment statement contained within a loop if the set of variables on the LHS of
the assignment intersect with the variables referenced by the loop invariant.

• A6 - Anti-append Early Exit: prevents the insertion of return and goto
statements at all locations within the program, except for immediately after
the last statement within a CFG node.

• A7 -Anti-appendTrivial Conditions: prevents the insertion of if-conditions
that can be shown to be either tautological or fallacious following static anal-
ysis of the program.

Motivated by a manual inspection of the patches generated by GenProg, AE, and
SPR on the ManyBugs dataset, these anti-patterns are designed to address speci�c
weaknesses that are exploited in producing incorrect patches:

• A1 and A6 are designed to overcome susceptibility to weak test oracles (i.e.,
those which only check the exit status of the program execution).

• A2, A3 and A4 are designed to compensate for inadequate test coverage,
which may otherwise cause important, but untested functionality to be de-
stroyed.

• A4 is intended to prevent existing vulnerabilities, exposed by the test suite, from
being masked, instead of being directly addressed.

• A5 is intended to prevent the occurrence of in�nite loops which signi�cantly
hinder the e�ciency of the search, and in the worst case, may be accepted as
correct patches by test suites that test for the absence of a particular bug.

• A7 aims to inhibit the implicit removal of functionality (observed when us-
ing tools such as SPR) through the insertion of a tautological or fallacious
condition.

To demonstrate the e�ectiveness of these anti-patterns, Tan et al. [2016] produced
modi�ed versions of GenProg and SPR incorporating these rules, termedmGenProg
and mSPR, respectively, and evaluated them against a sub-set of the CoREBench and
ManyBugs datasets, using 86 bugs taken from 12 programs.

126

5.2. MOTIVATION FOR STUDY

• Results demonstrated a 41% reduction of the search space for mGenProg, and
a 27% reduction for mSPR, yielding 1.39x and 1.78x speed-up, as measured by
the average wall-clock time taken to �nd a plausible repair.

• mSPR yielded fewer plausible repairs than SPR in most cases, however, the
omitted repairs were those (correctly) identi�ed as erroneous by the anti-
patterns. By producing fewer repairs, mSPR reduces the burden of manually
inspection placed upon the user.

• Both mGenProg and mSPR removed fewer lines of code than their unmodi�ed
variants, demonstrating a lower rate of functionality deletion.

• In cases where the repair produced was incorrect, mGenProg and mSPR were
able to localise the fault to a single statement within the program, substan-
tially reducing the complexity of debugging for the user.

Although the incorporation of these anti-patterns into both GenProg and SPR im-
proved both the e�ciency of the tool and its ability to localise the fault, neither saw
a considerable increase in the number of correct patches that were produced. For
mSPR, a single additional, correct repair was found, increasing the total number of
correct repairs up from 12 to 13 (out of 86). In the case of GenProg, mGenProg
found one fewer repairs, reducing the number of correct repairs found from 3 to 2.
Given the signi�ciant space reduction achieved by mGenProg, these results seem
to suggest that GenProg’s repair model lacks the complexity required to tackle a
greater number of bugs.

Furthermore, although the results from this study are encouraging, one may ques-
tion whether the techniques generalise beyond the relatively small set of bench-
marks used. Since the dataset used to perform the experiment was the same from
which the anti-patterns draw their motivation, the results may be subject to bias.

Despite questions over its generality, and the lack of any signi�cant improvement
in the number of correct repairs found (which is arguably a re�ection of the limita-
tions of the underlying repair model), anti-patterns provide a cost-e�ective means
of reducing the search space, increasing e�ciency, and improving fault localisation.
As repair models grow in size and complexity, such techniques may prove crucial
in tackling the inevitable explosion of the search space.

5.2. Motivation for Study

To avoid producing low quality patches, and to increase the number of correct re-
pairs produced by search-based repair techniques, we must use alternative, richer
repair models. Innovations from previous works can be used to increase the likeli-
hood of selecting a correct repair over a feasible, but incorrect one—speci�cally, the
�x prediction model used by Prophet [Long and Rinard, 2016]—in order to bene-

127

REPAIR MODEL

�t from these additions, we must possess a repair model capable of constructing a
viable repair to begin with.

One way to tackle this problem is through the introduction of human repair tem-
plates, as proposed in PAR [Kim et al., 2013]. The sourcing of these templates re-
mains a problem, however. It is also unclear how well these templates would ap-
ply to bugs beyond those encountered in the benchmark. From observation, one
sees that the majority of (publicly visible) repairs for large-scale, open-source pro-
grams, do not represent the common programmer errors encoded by these tem-
plates; rather, although certain bug �xes may share certain similarities in their se-
mantics, most are syntactically unique, and do not represent instances of common
programmer error.

Alternatively, one could take a similar approach to most genetic programming sys-
tems beyond the domain of automated repair, and generate code for insertion from
scratch, rather than copying it from the program under repair. However, whilst gen-
erating fragments of code from scratch may be acceptable for synthesis-based ap-
proaches, the resulting search space would almost certainly prove intractable when
using search-based repair.

Therefore, plastic surgery presents a promising way of reducing the size of the
search space to a more tractable one, and gives us a more general means of construct-
ing repairs, than relying on the utility of manually constructed repair templates. De-
spite previous studies demonstrating the e�ectiveness of the plastic surgery [Barr
et al., 2014; Martinez et al., 2014], its particular realisation within the repair model
of GenProg has been shown to struggle to discover a correct repair for most prob-
lems to which it has been applied, as both ourselves and others have found [Qi et al.,
2015]. (For more details, see Section 3.2.1.)

For the remainder of this chapter, the e�ectiveness of the plastic surgery within the
domain of automated repair is explored at �ner levels of granularity, beyond the
coarsely-grained statement-level repair model used by GenProg. Additionally, the
bene�t of incorporating a number of di�erent repair actions into the repair model
is explored in tandem.

Speci�cally, we ask the following research questions:

• RQ2: Is plastic surgery equally e�ective for all repair actions?

• RQ3: Can the e�ectiveness of plastic surgery be increased through the use of
unlabelled code snippets?

5.3. Methodology

Traditionally, when comparing repair techniques, one would make use of an exist-
ing set of pre-processed bugs from the literature, such as ManyBugs or GenProg’s

128

5.3. METHODOLOGY

TSE 2012 benchmarks. The e�cacy of repair actions would then be evaluated by
determining the number of bugs for which a repair can be found within a �xed
resource window [Le Goues et al., 2012a; Long and Rinard, 2015; Mechtaev et al.,
2016]. However, such an approach is inappropriate when assessing repair models,
for a number of reasons:

1. Diversity: To produce a fair comparison of techniques, one must subject the
repair models to a large sample of bugs, taken from a diversity of programs, in
order to minimise the e�ects of sampling errors, and to mitigate the potential
for any bias. At present time, the only publicly available benchmark suites for
automated program repair presented in the literature (ManyBugs, IntroClass,
GenProg TSE 2012, Defects4J, SPR) consist of at most several hundred bugs,
across fewer than 15 di�erent programs. Furthermore, the composition of
these benchmarks is unlikely to be truly random, and may be subject to unin-
tentional selection biases; for example, one may omit bug scenarios that are
particularly expensive or di�cult to replicate, such as bugs within the Linux
kernel.

2. Over�tting: Operating on a relatively small set of bugs allows one to unin-
tentionally over�t to the speci�cs of that sample. By analysing the composi-
tion of the corpus, one may quite simply introduce a number of speci�c repair
actions, tailored to �x certain bugs. Such criticism may be levelled at the ap-
proach taken by PAR to the design and evaluation of its repair actions, each
of which bear the watermarks of solving particular bugs from the benchmark
it was tested on. By evaluating its repair model on such a small and well-
studied set of benchmarks, we are unable to determine whether the repair
model continues to hold the same utility in a more general context.

A potential solution to this problem of over�tting would be to use separate
datasets for training (i.e., learning a suitable repair model) and testing (i.e.,
assessing the generality of the learned repair model). To avoid misleading
results, such a dataset would need to represent a truly random, uniform sam-
pling of real-world bug scenarios. To our knowledge, no such dataset is pub-
licly available. Existing real-world datasets are either hand-picked (e.g., Many-
Bugs), and thus subject to selection bias, or represent a narrow category of
bugs (e.g., IntroClass contains bugs in simple programming assignments).
Given the costs and complexities associated with sourcing and evaluating a
suitable dataset, the only feasible way to assess the e�ectiveness of a repair
model, in general, is through the use of bug �x mining.

3. Repair Quality: Instead of determining the ability of repair actions to aid in
the construction of high-quality �xes, one may unintentionally end up �nding
the repair actions which best exploit weaknesses in the test suites used by each
of the bug scenarios. For example, one may trivially introduce an “Append
Exit” repair action, which appends a statement containing exit(0); after the
selected statement. For many of the bugs within the TSE benchmarks, and a
sub-set of the ManyBugs scenarios, this would yield an acceptable �x, as only

129

REPAIR MODEL

the exit status of the program is checked, rather than its outputs. (For more
details, see Section 3.2.1).

4. Feasibility: Even if one were to possess a su�ciently rich variety of bugs,
evaluating the e�ectiveness of each repair action by using each of them to
perform search may take prohibitively long. One could sample a sub-set of the
candidate �xes generated by each repair action to reduce the running time, but
doing so will degrade the accuracy of the evaluation, and ties the performance
of the repair actions to the underlying search technique.

Given the di�culties involved in this approach, we opt to assess the prevalence and
graftability of repair actions through software repository mining instead, allowing
a far larger corpus to be analysed, without the need for expensive test suite evalua-
tions. The steps of our analysis are as follows:

1. A corpus of human bug �xes is mined from over 200 of the most popular repos-
itories on GitHub containing C source �les, using a custom-written, open-
source repository mining tool, BugHunter.

2. A set of abstract syntax trees (ASTs) and AST di�erences is computed for each
of the �les modi�ed by each �x, using GumTree [Falleri et al., 2014].

3. From these ASTs and their associated di�erences, a set of repair action in-
stances are mined using the detection rules.

4. For each modi�ed AST, a series of abstract and concrete donor pools are gener-
ated from its contents. Using these repair pools, we determine the graftability
of each of the proposed repair actions.

Trade-O�s

Although this approach overcomes the identi�ed problems involved in evaluating
repair actions by incorporating them into the search procedure, it also comes with
its own set of trade-o�s. These trade-o�s, and the steps taken to minimise their
e�ects upon the results of the analysis, are as follows:

• Precision: Although this approach allows us to evaluate repair actions across
a much larger corpus of bugs, it comes with the drawback that it excludes
correct repairs that are not syntactically equivalent to the human bug �x. To
partially mitigate this problem, we check whether the human repair is of the
same kind as the action (e.g., does it modify an if guard?) in addition to check-
ing whether the exact repair can be crafted from the elements of the program.
This step also allows us to reason about the e�ectiveness of synthesis-driven
automated repair approaches, and generative repair models, more like those
from traditional applications of genetic programming.

• Irrelevant Changes: Human repairs may often contain modi�cations to the
source code that are irrelevant to the bug �x. These changes might include

130

5.4. REPAIR MODEL

aesthetic or structural changes, or they may have been bundled together with
the bug �x commit. In theory, one could alleviate this problem by using delta-
debugging to minimise the AST di�erence. In practice, however, there may
be no (readily accessible) test suite, and so this technique is unusable. Instead,
in this study, only bug �xes pertaining to a single �le and function are used
to perform the analysis of repair actions.

Although the results of this analysis are likely to underestimate the utility of certain
repair actions, the overall results help us to understand the composition of human
repairs, the e�ectiveness of the plastic surgery hypothesis, and how we might go
about designing a more e�ective repair model.

5.4. Repair Model

In this section, we provide a more rigorous de�nition of “repair models” building
upon a previous, informal de�nition given by Martinez and Monperrus [2013]. Fol-
lowing this de�nition and a brief discussion of its related terms, we propose a series
of 23 repair actions, inspired by the plastic surgery hypothesis and existing repair
models.

De�nitions

The term “repair model” appears to have been introduced by Martinez and Mon-
perrus [2013] in an empirical study of search spaces within APR problems. They
provide the following informal de�nitions:

• a repair action is de�ned as a “kind of modi�cation on source code that is made
to �x bugs”, such as “changing the initialisation of a variable” or “adding a
method call”.

• a repair model is de�ned as a set of repair actions that are used to construct
repairs.

• a repair is de�ned as a concrete application (or instance) of a particular repair
action to source code, such as “adding the method call fun(x).”

We further re�ne the de�nition provided by Martinez and Monperrus [2013]:

Host Program, P : is the program subject to repair, whose behaviour is de�ned to
be incorrect (faulty) with respect to a given test suite T . P is represented by
the set of abstract syntax trees belonging to the source code �les under repair.
For the sake of brevity, x ∈ P is taken to refer to the existence of an AST node
x within P .

131

REPAIR MODEL

Editable Locations, L: the locations within the program at which a repair action
may be applied. For the majority of repair systems, L is comprised of the
sub-set of statements within P that are covered by at least one failing test
case.

Fault Localisation, µ : L→ R: the suspiciousness of each editable location, µl ≥
0, where larger values of µl imply a higher degree of suspicion, and µl = 0
indicates the belief that l does not contain a fault.

Donor Pool, D: the set of AST sub-trees that may be combined with a repair action
to construct an edit.

Repair Actions, a ∈ A: are used to describe a kind of AST transformation that
may be performed. Each repair action is described using the form described
in Equation 5.1.

statement(s1) s1 6= [] s2 6= [] s2 ∈ D
s1 → [s1; s2]

(5.1)

To the left of the transformation arrow, below the horizontal line, is the match-

ing signature; this uses the BNF for the language of the host program to specify
the shape of AST nodes that may be subject to this repair action, and to cap-
ture their contents. In the example above, the matching signature is simply
s1, allowing the action to be applied to any AST node (before consideration
of the rest of the rule).

The right-hand side of the transformation arrow, is used to specify the shape
of the node that the left-hand side should be transformed into. In the given ex-
ample, the right-hand side [s1; s2] states that the matching statement should
be replaced by a block containing the matching statement and another state-
ment, s2.

Finally, the clauses above the horizontal line describe the transformation crite-

ria that must be satis�ed by all instances of this repair action. In the example
above, the transformation criteria states that the matching node should not
be an empty block, and that the second statement of the right-hand-side s2

should be a non-empty block, contained within the donor pool.

Edit, e: represents a particular application of a repair action by specifying the match-
ing node within the host program, together with the values of each of the free
variables (e.g., s2 in the previous example).

Edit Space, E: de�nes the set of all edits that may be applied to P .

Edit Localisation, ω : E 7→ R: is used to assign a weight to each edit, ωe ≥ 0, in
a similar fashion to fault localisation. In this case, larger weights are used to
encode a belief that a particular edit is more likely to be correct.

132

5.4. REPAIR MODEL

Repair, R: represents a candidate repair as a set of non-overlapping edits, which
yield the program P ′ when applied to P .

For the sake of our analysis, and in the interest of bounding the size of the
repair space, the non-overlapping constraint is strengthened, such that no
two edits within a given patch may be applied at the same statement:

∀e1, e2 ∈ R | e1 6= e2 =⇒ nearestStmt(e1) 6= nearestStmt(e2)

From observation, most human repairs may still be expressed when this con-
straint is applied.

Donor Pool

Associated with each repair model is a donor pool, containing the fragments of code
(i.e., AST subtrees) from which repairs may be crafted. In the case of synthesis-
based or generative repair models, such as those used by SPR, PAR, and NOPOL, this
donor pool is implicit, and is lazily generated during the synthesis (or generation)
procedure. For tools relying on the plastic surgery hypothesis, such as GenProg
and SearchRepair, the donor pool explicitly describes the fragments that may be
used to form repairs.

Typically, the contents of the donor pool are sourced from the program under repair,
as is the case with AE, GenProg, Prophet, and others; however, foreign programs
may also be used to construct the donor pool, as demonstrated by SearchRepair
[Ke et al., 2015].

In either case, one must usually perform optimisations in order to reduce the size
of the donor pool to a more scalable one. Whilst these techniques, described be-
low, may lead to e�ciency gains, they do so at the cost of potentially solving fewer
bugs.

• In the case of GenProg (and its variants), the donor pool is composed from
the sub-set of �les that are subject to the repair, rather than the entire pro-
gram. Previous studies [Barr et al., 2014; Martinez et al., 2014] have shown
that this restriction causes a minimal reduction in the number of solvable
problems. However, these studies failed to account for the particulars of any
repair model, potentially reporting a higher number of successes than would
otherwise be possible.

• GenProg further restricts the donor pool to only contain code fragments that
are executed by at least one positive test case.

• AE reduces the number of redundant entries in the donor pool by treating
it as a set, rather than a collection, removing all duplicates of syntactically
equivalent statements.

• Rather than restricting the donor pool to the contents of the �le under repair,
Prophet retains the n-most executed statements from the entire program

133

REPAIR MODEL

within its donor pool.

One may also reduce the donor pool further still, through the introduction of com-
piler optimisation techniques—similar to those used by AE to prune edits from the
search space—such as canonicalisation and constant folding.

For each of the reviewed repair techniques which rely upon plastic-surgery, the
donor pool is used only at the statement-level, and so, it solely consists of statements
from the program. Here, we extend the donor pool, allowing it to operate with a
number of �ner-grained repair actions, by introducing sub-pools:

• Dstmt containing all the statements in the program.

• Dblock containing all control-�ow blocks within the program, with the excep-
tion of Switch blocks.

• Dexp containing all expressions within the program. In practice, one could
further divide this sub-pool by type, allowing for more e�cient repair action
queries.

• Dguard containing all boolean expressions that are used as guards for all if-,
while-, do-while- and for-statements within the program.

• Dlhs contains all of the left-hand side expressions of each assignment within
the program.

• Drhs contains all of the right-hand side expressions of each assignment within
the program.

• Darg contains all of the function call arguments within the program.

Repair Actions

Having provided a de�nition of repair models, repair actions, and their associated
terms, in this section we de�ne a number of repair actions, inspired by existing
repair techniques. Each repair action is tailored to exploit the plastic surgery hy-
pothesis, in order to maintain a tractable edit space, through the incorporation of
the extended donor pool, described in Section 5.4.2.

Below, we describe each of the 23 repair actions, using the repair action notation
introduced in Section 5.4.1. To aid our descriptions, we introduce the following
de�nitions:

• [s1; ... ; sn] denotes a block of statements.

• [] denotes the empty block.

• HasKind(node, kind) determines whether a given AST node belongs to a
speci�ed kind (e.g., statement, expression, function call). A node may have
multiple kinds.

134

5.4. REPAIR MODEL

Generic Statement Actions

This �rst group of repair actions is identical to the original actions used in the
GenProg repair model, with the addition of empty statement checking, a prepend
action, and the removal of the Swap action, present in earlier versions of GenProg.

• Delete Statement: removes a non-empty statement from the program.

s 6= []

s→ []

• Append Statement: appends a statement from the donor pool immediately
after an existing statement.

s1 6= [] s2 6= [] s2 ∈ D
s1 → [s1; s2]

• Prepend Statement: clones a statement from the donor pool at random and
prepends it immediately before an existing statement in the program.

s1 6= [] s2 6= [] s2 ∈ D
s1 → [s2; s1]

• Replace Statement: replaces an existing statement within the program with
a randomly selected clone, taken from the donor pool of statements.

s 6= [] s′ 6= [] s 6= s′ s′ ∈ D
s→ s′

If-Statement-Related Actions

• Wrap Statement: replaces a compatible statement with an if-statement whose
body contains the original statement, and whose condition is taken from the
donor pool.

s ∈ S
NC = {ForLoop,WhileLoop,DoWhileLoop, Switch, IfThen}

∀k ∈ NC | ¬HasKind(s, k)
c ∈ D

s→ IfThen(c, [s], [])

• Unwrap Statement: replaces an if-statement that contains no else-branch
by its then-branch.

else = [] then 6= []

IfThen(c, then, else)→ then

• Replace If-Condition: replaces the condition of an existing if-statement
within the program with a boolean expression taken from the donor pool.

135

REPAIR MODEL

c′ ∈ D c 6= c′

IfThen(c, then, else)→ IfThen(c′, then, else)

• Replace Then-Branch: replaces the then-branch of an existing if-statement
with a (compatible) block taken from the donor pool.

then′ ∈ D then 6= then′ then′ 6= [] then′ 6= else

If(guard, then, else)→ If(guard, then′, else)

• Replace Else-Branch: replaces the else-branch of an existing if-statement
with a (compatible) block taken from the donor pool.

else′ ∈ D else 6= [] else′ 6= [] else′ 6= then

If(guard, then, else)→ If(guard, then, else′)

• Remove Else-Branch: removes the else-branch of an existing if-statement,
provided that the else-branch does not contain an if-statement, and is not
empty.

else 6= [] kind(else) = Block

If(guard, then, else)→ If(guard, then, [])

• Insert Else-Branch: clones an existing block from the donor pool, and in-
serts it into a given if-statement (which lacks an else-branch) as its else-branch.

else ∈ D else 6= [] else 6= then

If(guard, then, [])→ If(guard, then, else)

• Insert Else-If-Branch: selects both a randomly-selected block and guard
from the donor pool, before joining them into an if-statement, and replacing
the empty else-branch of an if-statement with the created statement.

g2 ∈ D b2 ∈ D
b2 6= [] b2 6= b1 g2 6= g1

elif = If(g2, b2, [])

If(g1, b1, [])→ If(g1, b1, elif)

• AddGuard to Else-Branch: adds a guard to an unguarded else-branch within
the program.

else 6= [] ¬HasKind(else, If) g2 ∈ D else′ = If(g2, else, [])

If(g1, then, else)→ If(g1, then, else
′)

Switch-Related Actions

• Replace Switch-Expression: replaces the expression of a switch statement
with compatible expression from elsewhere in the program.

exp′ ∈ D exp 6= exp′

Switch(exp, block)→ Switch(exp′, block)

136

5.4. REPAIR MODEL

Loop-Related Actions

• Replace Loop-Guard: replaces the guard of an existing for-, while- or do-
while-loop with a guard cloned from the donor pool.

g′ ∈ D g 6= g′

While(g, do)→While(g′, do)

g′ ∈ D g 6= g′

DoWhile(g, do)→ DoWhile(g′, do)

g′ ∈ D g 6= g′

For(init, g, incr, do)→ (init, g′, incr, do)

• Replace Loop-Body: replaces the body of an existing for-, while- or do-
while-loop with a block cloned from the donor pool.

do′ ∈ D do 6= do′

While(g, do)→While(g, do′)

do′ ∈ D do 6= do′

DoWhile(g, do)→ DoWhile(g, do′)

do′ ∈ D do 6= do′

For(init, g, incr, do)→ For(init, g, incr, do′)

Assignment-Related Actions

• Replace RHS of Assignment: replaces the right-hand side of an assignment
statement with a compatible expression, cloned from the donor pool.

rhs′ ∈ D rhs 6= rhs′

Assign(lhs, op, rhs)→ Assign(lhs, op, rhs′)

• Replace LHS of Assignment: replaces the left-hand side of an assignment
with a compatible left-hand side, cloned from the donor pool.

lhs′ ∈ D lhs 6= lhs′

Assign(lhs, op, rhs)→ Assign(lhs′, op, rhs)

Function-Call-Related Actions

• Replace Target of Function Call:

lhs′ ∈ D lhs 6= lhs′

FunCall(target, args)→ FunCall(target′, args)

• Modify Arguments of Function Call:

137

REPAIR MODEL

args′ ∈ D args 6= args′

FunCall(target, args)→ FunCall(target, args′)

• Insert Argument into Function Call:

arg′ ∈ D args = l ⊕ r args′ = l ⊕ (arg′)⊕ r
FunCall(target, args)→ FunCall(target, args′)

• Replace Argument of Function Call:

arg′ ∈ D args = l ⊕ (arg)⊕ r args′ = l ⊕ (arg′)⊕ r
FunCall(target, args)→ FunCall(target, args′)

• Remove Argument of Function Call:

args = l ⊕ (arg)⊕ r args′ = l ⊕ r
FunCall(target, args)→ FunCall(target, args′)

5.5. Approach

Below, we brie�y describe the steps used by our tool, BugHunter, to mine repair
action instances in Git repositories:

1. Repository Sourcing: We use GitHub’s1 API to identify and download the
top 200 most starred projects whose source code includes C.2. Notable projects
include the Linux kernel, Redis, Git, PHP, Vim, tmux, CCV, and Curl.

2. Bug Fix Detection: We discover commits that are suspected to be bug �xes
across all of the 200 Git repositories. Possible bug �xes are found by iter-
ating over commit histories,3 and identifying commits that satisfy all of the
following criteria:

(a) The commit message must contain at least one of the following words:
bug(s), �x, �xed, �xes, fault(y), defect, repair(ed), patch(ed).

(b) To avoid compilation-related source changes, or artefacts from unre-
lated version control actions, the commit message for a potential bug �x
should not contain any of the following words: compile, compilation,
merge, revert.

(c) The commit for a potential bug �x must modify at least one .c source
�le, and should not modify any header �les (i.e., .h �les), nor should it
modify the source code of �les written in another language (that can be
identi�ed; e.g., .java, .py, .cc).

1https://github.com
2We use stars as a crowd-sourced indicator of the popularity of a project
3Using the open-source GitPython API: https://github.com/gitpython-developers/

GitPython

138

https://github.com
https://github.com/gitpython-developers/GitPython
https://github.com/gitpython-developers/GitPython

5.5. APPROACH

(d) Any modi�ed .c source code �les within the commit of a potential bug
�x must also exist in the previous version of the program (i.e., no new
.c source �les may be introduced).

(e) The commit does not delete any .c �les.

Although there may be more sophisticated ways to detect bug �xing commits,
we believe our approach is suitable for this study. Our relatively strict criteria
is likely to result in a high number of false negatives, which should have little
to no e�ect on its outcome. Importantly, these criteria should maintain a low
false positive rate. That is, the commits within our dataset are likely to be bug
�xes, but the size of the dataset may be much smaller than the set of all bug
�xing commits. We address concerns of size by examining commits from 200
projects.

Rather than dealing with the overheads and limitations of the GitHub API,
BugHunter downloads given Git repositories—which may be hosted at loca-
tions other than GitHub, if one so wishes—to the host machine and interacts
with the repositories directly. This avoids the need to re-download the source
code for a particular pair of commits, as the faulty and patched �les can be
quickly acquired using the git branch command.

In total, we collected 372,463 bug �xing commits. To reduce the costs of min-
ing, we use a random sample of 10,000 commits for the subsequent stages of
the mining process.

3. AST and Edit Script Generation: We use GumTree [Falleri et al., 2014] to
generate the abstract syntax trees (ASTs) of the buggy and �xed versions of
each modi�ed �le. We also use GumTree to compute an edit script between
the two trees, describing a set of primitive operations required to transform
the buggy AST into the �xed AST. Finally, we apply post-processing steps to
these ASTs and edit scripts to ease their integration into later stages of the
mining process. See Appendix B.1 for more details on this stage of the mining
process.

4. Donor Pool Extraction: We compute the set of donor pools, outlined in
Section 5.4.2, for each of the buggy ASTs. To reduce the memory burden of
maintaining multiple donor pools across thousands of �xes, we hash code
snippets and save them to disk.

5. Repair Action Detection: We use inference rules, described in Appendix
B.2 to mine instances of the repair actions described in Section 5.4.3.

6. Graft Detection: We determine which of the mined repair action instances
can be grafted from the contents of each donor pool.

139

REPAIR MODEL

5.6. Results

In this section we present the �ndings of our analysis. Firstly, we look at the fre-
quency of each of the proposed actions, before determining the extent to which
instances of these repair actions can be grafted from existing source code within
the same �le.

Repair Action Frequency

To determine the utility of each repair action outside of the context of plastic surgery,
Table 5.1 shows the number of instances of each repair action that were found across
each of the mined bug �xes, together with the number of bug �xes for which a repair
action of that kind could have been used.

We �nd that statement modi�cation is by far the most frequently-encountered re-
pair action, used by over 73% of bug �xes. This result, and the relatively low rate
of statement deletion, indicates that the majority of changes to the program occur
below the statement-level. This �nding con�rms our hypothesis, that the majority
of changes to the program occur below the statement-level (used by existing tech-
niques, such as SPR and GenProg). To �x more bugs, we can either restrict the
consideration of replacement statements to those that are structurally similar to the
ones being replaced, or we can extend the repair model with actions that operate
below the level of statements.

We also �nd that statement deletion occurs in almost a third of bug �xes, suggesting
that attempts to remove this repair action in the hope of avoiding the low-quality
repairs discovered within GenProg may be misguided and detrimental to the ef-
fectiveness of the search technique. The high frequency of statement deletion may
also be (partly) due to the way that statement replacement events are handled (as
separate deletion and insertion actions). Nevertheless, we �nd that statement inser-
tion occurs in over half of bug �xes, lending further support to the statement-level
repair model.

Upon �rst glance, the fraction of bug �xes that involve replacement of large blocks
of code—such as if-branches and loop bodies—may seem particularly high. This
number is likely due to the fact that we attempt to �nd all possible ways of inter-
preting a repair; a modi�cation to a particular statement within a block may also
be achieved by replacing that entire block with another that contains the necessary
changes.

Amongst the least frequent repair actions (< 2%), we �nd “Replace Assignment
Operator”, “Guard Else Branch”, “Remove Call Argument”, “Replace Switch Expres-
sion”, “Insert Else-If Branch”, “Unwrap Statement”, and “Insert Else Branch”. Al-
though “Remove Call Argument” and “Unwrap Statement” are relatively rare, nei-
ther of these repair actions requires any donor code, and so they may be added to

140

5.6. RESULTS

Repair Action Instances Usage %

Modify Statement 27,989 2,027 73.07
Insert Statement 9,749 1,510 54.43
Replace Then Branch 9,835 1,136 40.95
Modify Call 6,473 934 33.67
Delete Statement 6,702 915 32.98
Modify Assignment 5,869 843 30.39
Replace If Condition 1,946 648 23.36
Replace Call Argument 2,898 546 19.68
Replace Assignment RHS 1,668 535 19.29
Replace Loop Body 986 473 17.05
Replace Else Branch 3,481 408 14.71
Replace Call Target 828 201 7.25
Replace Assignment LHS 429 115 4.15
Wrap Statement 148 105 3.79
Insert Call Argument 388 82 2.96
Replace Loop Guard 134 69 2.49
Remove Else Branch 76 62 2.24
Insert Else Branch 54 45 1.62
Unwrap Statement 38 28 1.01
Insert Else-If Branch 19 17 0.61
Replace Switch Expression 21 16 0.58
Remove Call Argument 23 8 0.29
Guard Else Branch 2 2 0.07
Replace Assignment Operator 0 0 0.00

Table 5.1: The number of instances of each repair action discovered across each of
the mined bugs, together the number (and percentage) of bugs that involve at least
one repair action of that type.

a repair model to solve a small number of bugs at a relatively low additional cost.
In contrast, each of the other repair actions may potentially have a large number
of applicable potential snippets, and thus they may represent a poor value proposi-
tion within a context where compute resources prevent a large number of candidate
repairs from being tested.

Repair Action Graftability

Having determined the frequency of repair actions, we now turn our attention to
whether the snippets used within those repair actions can be discovered within the
(buggy version of the) source code of the same �le. Speci�cally, we measure the
graftability of each of the di�erent types of repair action (i.e., the fraction of the
repair action instances whose materials can be found in the donor pool). Since the

141

REPAIR MODEL

Graftability

Type Concrete Pool Abstract Pool

Delete Statement 100.00% 100.00%
Guard Else Branch 0.00% 50.00%
Insert Call Argument 44.85% 88.92%
Insert Else Branch 20.37% 25.93%
Insert Else-If Branch 5.26% 15.79%
Insert Statement 27.17% 37.90%
Modify Assignment 58.00% 71.63%
Modify Call 4.55% 45.54%
Modify Call Arguments 4.72% 37.22%
Modify Statement 47.40% 57.54%
Remove Call Argument 100.00% 100.00%
Remove Else Branch 100.00% 100.00%
Replace Assignment LHS 17.25% 49.18%
Replace Assignment RHS 10.07% 45.50%
Replace Call Arg 22.60% 52.45%
Replace Call Target 18.84% 94.08%
Replace Else Branch 0.92% 37.92%
Replace If Condition 34.33% 55.65%
Replace Loop Body 1.11% 15.52%
Replace Loop Guard 12.69% 38.06%
Replace Switch Expression 9.52% 42.86%
Replace Then Branch 47.25% 51.46%
Unwrap Statement 100.00% 100.00%
Wrap Statement 35.81% 54.05%

Table 5.2: The graftability of each repair action in the contexts of the concrete pool,
containing the unchanged snippets from the �le under repair, and the abstract pool,
containing the unlabelled forms of the snippets from the �le under repair.

graftability of a repair action is dependent upon the contents of the donor pool, we
measure graftability for both the concrete and abstract donor pools. The results of
this analysis can be found in Table 5.2. Note, actions that purely involve deletion,
such as “Delete Statement” and “Remove Else Branch”, are completely graftable re-
gardless of donor pool since they do not introduce code.

Concrete Donor Pool

Using the contents of the concrete pool, we �nd that between 0–58% of instances of
particular repair action types can be grafted in their entirety. The large degree of
variance in graftability between di�erent kinds of repair action suggests that plastic
surgery is more e�ective within the context of some kinds of repair action, and less

142

5.7. DISCUSSION & CONCLUSION

so in others.

At the statement level, we �nd that 27% of statement insertions may be grafted; a
similar rate to previous studies [Barr et al., 2014; Martinez et al., 2014]. Encourag-
ingly, we �nd that statement modi�cation—the most frequently encountered repair
action, at 73%—is the second-most graftable repair action with a graftability of 47%;
this result suggests that the modi�ed form of a statement are likely to already ex-
ist within the donor pool. We �nd that 58% of “Modify Assignment” actions are
graftable, hinting that varying degrees of graftability may be seen between di�er-
ent kinds of statements; we leave investigation of this possibility, and how it may
be harnessed by the repair model, to future work.

In general, we �nd that repair actions that accept a block of statements as their input
are amongst the least graftable: “Replace Loop Body” (1%), “Replace Else Branch”
(1%) and “Insert Else-If Branch” (5%). Two surprising exceptions to this rule are
“Insert Else Branch” (20%) and “Replace Then Branch” (47%).

Below the statement level, we observe a graftability between 5% and 45%. Again,
we observe substantial variance between the graftability of actions at this level.
Amongst the most graftable repair actions are “Replace If Condition” (34%), “Wrap
Statement” (36%), and “Insert Call Argument” (45%).

Abstract Donor Pool

Comparing the abstract pool to the concrete pool, we see a substantial increase in
graftability, rising from 0–58% to 16–94%. These results show that snippets struc-
turally identical to those used by the repair are likely to already exist, and as such,
serve as an e�ective pool of donor code from which to automatically craft repairs.
This increase in graftability is most prominent in block-level actions, that were
amongst the most di�cult to graft using the concrete donor pool: “Replace Loop
Body” (1% to 16%), “Replace Else Branch” (1% to 38%), “Insert Else-If Branch” (5%
to 16%). Likewise, “Modify Call” and “Modify Call Arguments” rise from 5% each
to 46% and 37%, respectively. When one removes block-level repair actions from
consideration, one �nds that graftability increases from 16–94% to 37–94%—a rea-
sonable �gure when attempting to automatically generate repairs.

5.7. Discussion & Conclusion

Building upon previous work on plastic surgery and the redundancy assumptions
of automated program repair, we �nd that the e�ectiveness of plastic surgery varies
according to the particular repair actions to which it is applied. In general, we �nd
that plastic surgery is most e�ective in the context of more granular repair actions,
at and below the statement level, and less so at the block level. We �nd that our

143

REPAIR MODEL

odds of discovering a graft within the previous version of the �le under repair are
signi�cantly enhanced when labels (i.e., variable and function names) are removed
from consideration.

In Table 5.3, we summarise the �ndings of our study by giving the frequency and
graftability of each of the proposed repair actions, together with a measure of its
e�ectiveness, computed as the product of frequency and graftability. To achieve a
balance between search e�ciency and the number of bugs that can be solved by a
given tool, we suggest that the search should devote the bulk of its attention to-
wards repair actions that are both frequent and highly graftable. We also suggest
swapping GenProg’s “Replace Statement” operator with a “Modify Statement” op-
erator, or otherwise tuning the “Replace Statement” operator to heavily favour the
replacement of a statement with a structurally similar one.

144

5.7. DISCUSSION & CONCLUSION

Type Frequency Graftability E�ectiveness

Modify Statement 73.00% 57.54% 42.00%
Delete Statement 32.98% 100.00% 32.98%
Modify Assignment 30.39% 71.63% 21.77%
Replace Then Branch 40.95% 51.46% 21.07%
Insert Statement 54.43% 37.90% 20.63%
Remove Call Argument 19.68% 100.00% 19.68%
Modify Call 33.67% 45.54% 15.33%
Remove Else Branch 14.71% 100.00% 14.71%
Replace If Condition 23.36% 55.65% 13.00%
Replace Call Arg 19.68% 52.45% 10.32%
Replace Assignment RHS 19.29% 45.50% 8.78%
Modify Call Arguments 19.68% 37.22% 7.32%
Replace Call Target 7.25% 94.08% 6.82%
Replace Else Branch 14.71% 37.92% 5.58%
Replace Loop Body 17.05% 15.52% 2.65%
Insert Call Argument 2.96% 88.92% 2.63%
Wrap Statement 3.79% 54.05% 2.05%
Replace Assignment LHS 4.15% 49.18% 2.04%
Unwrap Statement 1.01% 100.00% 1.01%
Replace Loop Guard 2.49% 38.06% 0.95%
Insert Else Branch 1.62% 25.93% 0.42%
Replace Switch Expression 0.58% 42.86% 0.25%
Insert Else-If Branch 0.61% 15.79% 0.10%
Guard Else Branch 0.07% 50.00% 0.04%

Table 5.3: A summary of the frequency of each of the proposed repair actions, mea-
sured by the percentage of bugs in which it is encountered, together with the grafta-
bility of that repair action when the abstract pool is used. E�ectiveness, computed as
the product of frequency and graftability, estimates the fraction of bugs for which a
given repair action may graft a repair.

RQ2: Is plastic surgery equally e�ective for all repair actions?

We discovered that plastic surgery is less e�ective when applied at the block level.
This suggests that excluding such edits from the search space may increase e�-
ciency with minimal compromise to repairability (i.e., the bugs that can be �xed).

We found that statement deletion is the second most common repair action, occur-
ring in roughly a third of bug �xes. This result suggests that excluding statement
deletion from the repair model to avoid over�tting [Long and Rinard, 2015; Qi et al.,
2015] may be misguided and likely to reduce the ability to �x bugs.

Given the success of repair techniques which use repair actions below the statement-
level, it is crucial that such actions be incorporated into scalable, search-based repair.

145

REPAIR MODEL

Our results demonstrate that plastic surgery can be successfully applied at this level
of granularity—by doing so, we can allow search-based repair to address a greater
number of bugs.

We also found that the majority of bug �xing commits occur below the statement-
level. In 58% of cases, the modi�ed variant of the statement could be found some-
where else in the program. This result could be used to increase the e�ciency of
program repair by focusing statement replacement on structurally similar snippets.
This result builds on previous work by Soto et al. [2016], showing that certain kinds
of statement are more likely to be replaced by certain kinds of donor statements (i.e.,
not all statement replacements are equally likely).

RQ3: Can the e�ectiveness of plastic surgery be increased through the

use of unlabelled code snippets?

We found that the e�ectiveness of plastic surgery can be boosted signi�cantly through
the use of abstract donor pools. Our results suggest that incorporating abstract
donor pools into repair techniques could provide a substantial increase in the num-
ber of �xable bugs.

Future Work

Below, we discuss a number of ways in which this analysis could be extended to
gain knowledge about the likelihood and composition of repair actions; knowledge
that may be leveraged to produce a more predictive, e�ective, and e�cient repair
model, allowing more bugs to solved in fewer candidate evaluations.

• Limitations of Plastic Surgery: We found that success of plastic surgery
is dependent upon both the repair actions to which it is applied, and their
associated level of granularity. Building on this, one could further explore a
more detailed set of repair actions to determine whether type, or other at-
tributes associated with code fragments a�ect graftability. In particular, it
may be fruitful to explore the graftability of particular kinds of statements and
expressions, and whether certain fragments are unlikely to be found within
existing code (e.g., print statements and strings). By identifying the strengths
and weaknesses of plastic surgery, we can tune our repair model accordingly,
and prune certain portions of the search landscape, leading to a more e�cient
search process.

• Domain-Speci�c Languages: Although we use inference rules to formalise
the semantics of repair actions within this analysis, further work could be per-
formed to allow a compact domain-speci�c language to be used to describe
(and implement) repair actions (in terms of constrained source code transfor-
mations). Beyond improvement to software quality, this addition would allow
potential repair actions to be machine generated, rather than being translated

146

5.7. DISCUSSION & CONCLUSION

by hand, opening up the possibility of using evolutionary computation and
knowledge discovery to construct and evaluate novel repair actions.

• Graft Localisation: Although we may use the frequency of repair actions to
generate a more e�ective probabilistic repair model, this step only allows us
to di�erentiate between repair actions, rather than candidate grafts. One so-
lution to this would be to incorporate an additional layer into the probabilistic
model, describing the likely type of the donor code snippet. Soto et al. [2016]
achieve this by looking at which kind of statement is most likely to replace a
statement of a given kind. Soto et al. [2016]’s approach could be further ex-
tending to statement insertions, or it could use other attributes of a snippet,
such as its size or complexity.

More generally, it may be productive to apply machine learning to the prob-
lem of graft selection—for both automated repair and otherwise. Ideally, such
an approach would allow us to rank grafts by their likelihood. In addition to
potentially improving the quality of repairs and the e�ciency of the search
process, this step would allow us to remove the non-deterministic aspects
of the search with minimal impact to results, eliminating the costly need to
gauge performance over a number of repeated costs.

• Discovery of Repair Actions: Instead of mining a pre-speci�ed set of re-
pair actions, one may attempt to discover common, predictive repair actions
within the corpus, through the application of machine learning and graph
mining techniques. In particular, one may combine a variant of the LASE
[Meng et al., 2013], a method for discovering context-aware, systematic edits,
with BugHunter to �nd (and constrain) common repair actions across a wide
and diverse corpus of programs.

• Bug-FixDetection andCategorisation: To identify a larger number of bug-
�xing commits, and to reduce the number of false positives, one could explore
the use of more sophisticated bug �x identi�cation criteria. Whilst incorpo-
rating such measures would be unlikely to signi�cantly alter the outcome of
the research questions posed in this chapter, it may allow BugHunter to be
used to probe the composition of speci�c repair actions, allowing the �ndings
to be exploited to produce a more e�ective repair technique.

By improving bug �x detection accuracy, one may use existing techniques
[Thung et al., 2012] to predict the category of bug under repair, potentially
allowing the exploitation of that information to suggest which repair actions
are most likely to be used and where the �x is most likely to reside.

147

REPAIR MODEL

148

CHAPTER 6

Search

Where search-based program repair techniques such as GenProg, HDRepair, and
PAR are designed to be capable of multiple-edit repair, rarely is this ability used in
practice. Underlying all of these techniques is a common search algorithm based
on genetic programming. HDRepair and PAR can be viewed as extensions to the
original GenProg system. Despite possessing the ability to construct multiple-line
patches, in practice, the majority of patches generated by GenProg can be reduced
to a single edit [Qi et al., 2015]. Moreover, almost all of the plausible patches gen-
erated by GenProg on the ManyBugs dataset have been shown to be equivalent to
functionality deletion [Qi et al., 2015]; only 2 of the 55 reported bug �xes are correct,
with respect to the intended program semantics. Whilst these results suggest that
GenProg, as a whole, struggles to craft repairs, it is unclear whether this is due to
an inadequate repair model, a poor search algorithm, or both.

Since the introduction of GenProg, work on search-based program repair has fo-
cused primarily on the e�ciency of the repair process, to the detriment of scalability
(i.e., the ability to repair multiple-line bugs). We brie�y discuss three subsequent
search based repair techniques with alternative search algorithms:

• AE, proposed by a sub-set of GenProg’s authors, replaces GenProg’s search
algorithm with an exhaustive search. By default, this search is conducted
within a single-edit search space. This search space is obtained by discov-
ering, and discarding, a sub-set of provably equivalent patches, through the
use of various compiler optimisations and program analysis techniques. Fur-
thermore, by treating the search process as a decision problem (i.e., is this
patch correct?), rather than an optimisation one (i.e., how close is this patch to

being correct?), AE uses test case prioritisation, and regression test selection
techniques to reduce the expected number of test case evaluations.1

• RSRepair, a variant of GenProg, showed that a form of random search at-
tained a higher e�ciency and success rate than GenProg’s genetic algorithm
[Qi et al., 2014]. However, RSRepair constrains itself to a single-edit search
space, and the ManyBugs dataset was used to conduct its evaluation. Thus, it
may be that RSRepair simply converges to a plausible but incorrect solution
faster than GenProg does. Authors have incorrectly cited this study as evi-
dence that GenProg is merely equivalent to a less e�cient form of random
search [Long and Rinard, 2015, 2016]. Whilst this may be the case, the eval-
uation of RSRepair does nothing to prove this, nor does it claim to. Rather,

1Note, regression test selection, unlike test prioritisation, could be used by GenProg to reduce the
test suite for a candidate patch.

149

SEARCH

RSRepair shows the e�ectiveness of using test case prioritisation to reduce
the cost of �nding single-edit patches.

• SPR introduces both a new, substantially larger repair model, intentionally
lacking a statement deletion repair action, and a new search algorithm, used
for a sub-set of its patches, known as value search. SPR manages to �nd cor-
rect patches for 16 bug scenarios within the ManyBugs dataset, compared to
2 found by GenProg. Despite the intentional exclusion of explicit function-
ality deletion, Mechtaev et al. [2016] highlight that SPR implicitly generates
many such patches through the introduction of tautological and contradic-
tory branch conditions [Mechtaev et al., 2016]. For the one of the libtiff

subjects within ManyBugs, 80% of SPR’s reported patches were found to be
functionality deleting.

To accommodate the increased search space accompanying its enriched repair
model, SPR uses value search to soundly reduce the number of patch evalu-
ations. Instead of validating concrete patches, value search �rst determines
whether a set of outcomes exists for a given branch condition that would
cause the test suite to pass. If, and when such a set of outcomes is found,
SPR utilises value search to synthesise a suitable branch condition, using its
knowledge of the program state, and intended outcome at each evaluation of
the branch condition.

Although all of these techniques outperform GenProg in terms of e�ciency, and
in some cases, e�ectiveness (i.e., the number of bugs for which it can �nd a repair),
none is capable, by default, of producing multiple-edit patches. In other words,
since GenProg, researchers have proposed signi�cantly more e�cient techniques
for �nding single-edit repairs, but none have proposed better (search-based) tech-
niques for generating multiple-edit patches.

SPR, RSRepair, and AE demonstrate that treating program repair as a decision prob-
lem, rather than an optimisation problem, is an e�ective strategy for decreasing the
cost of �nding single-edit patches. This treatment, however, is not scalable; the size
of the search space increases exponentially with respect to the size of the patch.
Even if decision techniques can substantially reduce the cost of evaluating a single
candidate, the combinatorial number of patches renders this advantage, more or less,
useless. If search-based program repair is to scale to multiple lines, active search al-
gorithms capable of discovering partial �xes, and promising repair locations will be
needed.

Motivated by this need for better search algorithms for multiple-edit repair, in this
chapter, we conduct a theoretical and empirical analysis of GenProg’s search technique—
since GenProg is the only search based technique capable of multiple-edit repair—in
order to gain a clearer understanding of its strengths and weaknesses. Based on our
�ndings, we propose and demonstrate an alternative search technique better suited
to the nuances of program repair, inspired by a greedy algorithm.

In summary, the main contributions of this chapter are as follows:

150

6.1. RELATED WORK

• We conduct a theoretical analysis of GenProg’s search algorithm, identifying
its underlying assumptions and a number of potential weaknesses.

• Based on our theoretical analysis, we conduct an empirical analysis to test
our theories and to determine the contribution of �tness to the success of the
search.

• Motivated by the �ndings of these analyses, we propose and implement an
alternative search technique, capable of multi-edit repair, based on a greedy
algorithm.

• We demonstrate that our proposed technique outperforms GenProg’s search
algorithm across a number of performance metrics.

The remainder of the chapter is structured as follows: Section 6.1 provides a re-
view of the related literature. Sections 6.2 and 6.3 conduct theoretical and empirical
analyses of GenProg’s search algorithm, respectively. Section 6.4 introduces and
evaluates an alternative search algorithm for program repair, inspired by greedy
algorithms. Section 6.5 outlines directions for future work. Finally, Section 6.6 sum-
marises the �ndings of this chapter and provides concluding remarks.

6.1. Related Work

In this section, we brie�y discuss previous and related work concerning the per-
formance of genetic algorithms for automated program repair, as well as relevant
studies on the matter of search landscapes for programs.

Random Search for Program Repair—RSRepair

In an e�ort to gauge the e�ectiveness of GenProg’s search algorithm, Qi et al.
[2014] explored the e�ects of replacing GenProg’s genetic algorithm with a ran-
dom search. The authors found that, over 100 runs on a sub-set of the ManyBugs
benchmarks, their variant of random search, RSRepair, achieved both a higher suc-
cess rate, and a lower mean number of test case evaluations than GenProg on 24
out of 25 problems. For more technical details on RSRepair, see Section 2.2.3.

Although these results demonstrate the (relative) e�ectiveness of random search
compared to genetic algorithms for the purposes of program repair, they do not
necessarily show that genetic algorithms are detrimental to the search. Importantly,
RSRepair is able to use test case prioritisation and to terminate on the �rst instance
of failure within the test suite, whereas GenProg must evaluate a �xed number
of tests in order to produce a �tness value, regardless of their outcomes. As such,
RSRepair is able to achieve a far higher test case e�ciency than GenProg; in most
cases, the candidate repair fails the �rst negative test case. In addition to evaluating

151

SEARCH

candidates in a di�erent way, RSRepair also operates in a single-edit search space,
giving it a distinct advantage over GenProg, which considers patches of an arbitary
length.

For repairs that require only a single edit, there is little room for genetic algo-
rithms to compose a solution, thus leading to a partial explanation of the strength
of RSRepair. Conversely, problems requiring multiple edits cause us to question
whether genetic algorithms are capable of identifying and combining partial solutions—
no studies have investigated this assumption.

Representation and Operators

Le Goues et al. [2012c] conducted a study of the impact of various parameter choices
on the e�ciency of GenProg and the total number of bugs it is able to repair (within
a �xed window of time). Speci�cally, the authors considered the representation
used, the choice of crossover operator, the probabilities associated with the selection
of each mutation operator, and the weighting factor used by the fault localisation to
bias the search towards mutation of statements executed solely by the failing test
cases. Through their investigation, the authors discovered:

• The use of the Patch representation, in which individuals are represented as
a sequence of edit operators, yielded a higher success rate than the original
AST/WP representation.

• The time taken to �nd a repair (when successful) was lowest when no crossover
operator was used, although this resulted in the worst success rate (54.4%) of
the options studied. Of the two remaining options, one-point crossover and
sub-set crossover, one-point crossover was found to have the higher success
rate (65.2% vs. 61.1%), and the lower number of on-average �tness evaluations
(118.20 vs. 163.05).

• From observation of the composition of (Insert, Delete, Replace) operations
within the minimised form of (plausible) repairs generated by GenProg, it
was found that each of these edit types appeared in 13%, 51%, and 57% of re-
pairs, respectively. In contrast, the associated weightings for each mutation
operator cause the di�erent types of edit to appear with equal frequency, de-
spite the prevalence of deletion and replacement edits.

• The authors also measured the proportion of repairs that exclusively modi�ed
statements executed by the negative test cases to the repairs that modi�ed
statements executed by both the positive and negative test cases. Only 35% of
modi�ed statements were executed exclusively by the negative tests, despite
the fact that GenProg’s default fault localisation weightings attribute 90% of
modi�cations to statements executed solely by the negative tests.

Based on the results of the investigation, Le Goues et al. [2012c] changed the pa-
rameters used by GenProg, and evaluated the resulting algorithm on a set of 105

152

6.1. RELATED WORK

bugs (which now forms a sub-set of the ManyBugs benchmarks). These changes
allowed GenProg to repair 5 additional bugs, and decreased the time taken to �nd a
repair by 17-43% for some of the more di�cult bug scenarios. Qi et al. [2015] found
that, of the 55 bugs that were reported to have been repaired by GenProg, only 2
were correctly repaired. In most cases, patch evaluation only considered the exit
status of the program and not its outputs, leading to patches that inserted code such
as exit(0); to be accepted. The �ndings of that study cast uncertainty on any
conclusions made regarding the e�ectiveness and e�ciency of GenProg’s search
algorithm on the basis of inadequate test suites. Results reported to increase the
success rate or reduce the cost of �nding a repair may in fact be pushing the search
towards areas likely to contain a plausible but incorrect repair.

Predicate-based Fitness Functions

Fast et al. [2010] propose an alternative �tness function for GenProg based on
the similarity of learned program invariants—logical assertions at points within
a program that hold true over an associated set of executions, also referred to as
predicates—between the original program and candidate solutions. For example, an
invariant may specify that an integer argument x, belonging to some given function,
is always non-negative (i.e., x ≥ 0 holds over all observed executions).

Fast et al. [2010] use Daikon [Ernst et al., 2007], a popular, o�-the-shelf invariant
mining tool, to infer these predicates. This process works by �rst instrumenting
the program to monitor invariants over observed program values, before executing
the program and observing which predicates hold. Sets of observed predicates are
collected for executions of each of the tests cases within the test suite. Building on
work by Liblit et al. [2005] on the use of invariants for statistical fault localisation,
the following statistics are calculated for each observed predicate P :

• Failure(P): probability the program will fail, given P .

• Context(P): probability the program will fail, given the line on which P is
tested is reached.

• Increase(P): the amount by which P being true increases the probability of
failure.

The resulting statistics describe a set of observations of program behaviour that
are associated with failure (e.g., the branch condition at line 5 only evaluates to 0
when the program fails). Using these statistics, the following two predicate sets are
determined:

• Increase Set: all P such that Increase(P) > 0.

• Context Set: all P such that Context(P) > 0.

The following universal sets of predicates are also constructed:

• all P that hold for every execution,

153

SEARCH

• all P that fail to hold for every execution,

• all P that hold only for the positive tests,

• all P that fail to hold only for the negative tests.

Together, these six sets represent a baseline B, characterising the behaviour of the
buggy program. To compare the behaviour of a candidate patch i to the original
program, its six invariant sets Vi are computed and compared against B. This com-
parison is performed by computing a number of statistics:

• The number of predicates that once predicted failure (i.e., the set of predicates
that hold only for the negative tests) that no longer hold on failing runs in
variant i.

• The number of predicates that did not hold on failing runs for the original
program that hold on failing runs for variant i.

• The cardinality of set di�erences, for each of the six predicate sets.

• The weighted sum of the Context scores of predicates in the context set. (This
weighting is learnt using linear regression, discussed next.)

• The weighted sum of the Increase scores of predicates in the context set

These statistics are combined with the outcomes of the test suite for the candidate
patch to form a characteristic vector of scalar features fi. To transform these vectors
into scalar �tness values, linear regression is used to learn a suitable global intercept
c0, and a linear weighting of features, given in Equation 6.1.

predicate_�tness(i) = c0 +
∑
j

cjfi,j (6.1)

As its training set, the learner requires a large number of evaluated patches for the
bug under repair—in the evaluation performed in the [Fast et al., 2010], 1772 such
patches were generated—together with their test suite outcomes, and the state of
their invariants. Assuming that at least one solution to the bug is found amongst
these patches,Dopt, the shortest edit distance from a given patch to a known repair,
is calculated for each entry in the training set. Linear regression is then used to
calculate a global intercept and a vector of feature weights that approximates the
edit distance from a given edit to a potential solution.

Although the idea of using learned invariants as part of an alternative, more amenable
�tness function sounds promising, the practical utility of the �tness function pro-
posed by Fast et al. [2010] is unclear. The technique requires that a highly expensive
process of learning be carried out before the search process begins; for larger pro-
grams, such as PHP and Python, gathering the necessary number of patches would
likely take longer than 12 hours. More importantly, however, this approach requires

154

6.1. RELATED WORK

that at least one repair to the bug is known before beginning the search. This re-
quirement raises the question: “If a repair to the bug is already known, then why
are we searching?”

To evaluate the quality of the �tness function, the authors measure its �tness–

distance correlation [Jones and Forrest, 1995] for a single bug scenario, taken from
a precursor to the GenProg TSE 2012 dataset. The �tness–distance metric approx-
imates the di�culty of a search problem as the correlation between (scalar) �tness
values and the edit distance to the nearest (known) solution. For a single bug, the
authors found a moderately strong correlation between the predicate-based �tness
function and Dopt. In contrast, GenProg’s original �tness function demonstrated
little to no correlation. We do not believe that these results should come as a sur-
prise, nor do they demonstrate the superiority of the predicated-based �tness func-
tion; the results are a re�ection of the fact that Dopt was used to train the �tness
function.

Test Case Sampling

In addition to conducting an initial study into the feasibility of using learned pro-
gram invariants as part of an alternative �tness function, Fast et al. [2010] investi-
gated the use of test suite sampling to reduce the cost of �tness evaluations. Instead
of running all tests within the suite for each �tness evaluation, the authors observed
the performance of the search—measured by wall-clock time taken to �nd a repair—
when a random sample of tests is used to calculate �tness.2 Fast et al. [2010] found
that the use of sampling, combined with a safe-impact analysis responsible for de-
termining whether the outcomes of a particular test would be a�ected by a given
patch, resulted in an 81% speed-up. Notably, the benchmarks used to conduct this
study are amongst those that we found to have weak oracles (e.g., only checking
the exit status of the program; see Section 3.2.1). As such, it is unclear whether test
case sampling would produce the same gains when used with stronger test suites.
The authors found little di�erence in performance between the use of random selec-
tion and Walcott et al. [2006]’s time-aware test case prioritisation technique when
selecting the tests within the sample.

Crossover

Oliveira et al. [2016] argue that GenProg’s implicit con�ation of operator type, fault
location, and �x statement into a single discrete unit within the genome results in
a landscape that is more di�cult to traverse. With the goal of allowing more gran-
ular building blocks to be identi�ed and exploited, the authors propose explicitly
separating these aspects into their own sub-spaces. To this end, six new crossover
operators are proposed, all of which act upon an intermediate representation that

2No mention of the size of this sample is made in the paper. Both subsequent experiments
[Le Goues et al., 2012a] and the default settings within GenProg use a 10% sample.

155

SEARCH

Figure 6.1: An illustration of the implicit search space de�ned by GenProg’s rep-
resentation and a more granular alternative proposed by Oliveira et al. [2016].
Whereas the type of operation, location, and donor statement used by an edit are all
considered to be part of a discrete, evolvable unit within GenProg’s representation,
Oliveira et al. [2016]’s intermediate representation allows each of these attributes
to be treated separately by a set of purpose-built crossover operators.

explicitly separates these sub-spaces, illustrated in Figure 6.1. These six crossover
operators are composed from three base operators, with and without a “auxiliary
memorisation component”:

• One-Point Crossover on a Single Subspace (OP1Space) applies variable-length
one-point crossover to a single subspace, selected at random, leaving the rest
of the intermediate representations of the parents unchanged.

• Uniform Single Subspace (Unif1Space) selects a subspace at random and swaps
entries between components according to a randomly-generated mask.

• One-Point Across All Subspaces (OPAllS) performs a variable-length crossover
across the entire intermediate representations of both parents, allowing all
subspaces to be mixed simultaneously.

To allow this intermediate representation to be used in tandem with the original
Patch representation, individuals are subject to an encoding and subsequent decod-
ing phase. During the encoding phase, the edits within each patch are exploded into
each of the three subspaces of the intermediate representation. After crossover is
applied across the three subspaces, each intermediate representation is decoded to
form a valid patch. As a consequence of allowing individual subspaces to be blindly
modi�ed without consideration of the well-formedness of the patch, invalid edits
may be introduced. The role of decoding, therefore, is to identify and remove these
invalid edits.

Optionally, a memorisation component may be employed to avoid removing invalid
edits produced during crossover, thus limiting the destruction of search informa-
tion. This component caches the details of each edit encountered over the course of
the search, allowing recovery queries to be made to �nd valid edits at a particular
location and/or with a given donor statement. When enabled, memorisation will
attempt to use part of the information provided by the invalid edit to �nd an edit
that shares some of its details within the cache.

To assess the e�ectiveness of these operators, the authors compared the result-
ing performance of each operator against the performance achieved through the

156

6.2. THEORETICAL ANALYSIS

use of GenProg’s original one-point crossover operator. Across 43 bug scenarios,
taken from small programs in the IntroClass and GenProg TSE 2012 benchmarks,
Unif1Space without memorisation yielded a 34% improvement in the success rate
of the search. Accompanying this improvement in the success rate, however, was
a signi�cant degradation of e�ciency, as measured by the average number of test
suite evaluations (15.59 vs. 29.32).

Mutational Robustness

Schulte et al. [2013] investigated the widely-held view that the majority of soft-
ware is highly fragile and that small changes are likely to lead to substantial and
undesirable changes in behaviour. The authors found that over 30% of (single-
edit) modi�cations—generated using GenProg’s mutation operators—resulted in no
change to the outcomes of the test suite. The results were found to hold across 22
programs at both the source code and assembly instruction level, as well as across
multiple programming languages, including C, C++, Haskell, and OCaml.

Based on their �ndings, the authors proposed the use of neutral variants as a means
of proactively generating software diversity, allowing techniques such as N-version
programming [Avizienis, 1985] to be used to supply an alternative version of a func-
tion when it ceases to work under some conditions. To demonstrate the practical
utility of such an ability, the authors seeded �ve latent faults into the original ver-
sions of 11 di�erent programs, and evaluated whether a �x to the fault could be
found from amongst a sample of 5,000 of its single-edit neutral variants. With re-
spect to an extended test suite, containing tests that were unused in the generation
of neutral variants, plausible repairs for 12 out of 55 faults were found.

6.2. Theoretical Analysis

In this section, we identify and qualitatively discuss a number of phenomena ex-
hibited by GenProg’s search algorithm, which we believe to be detrimental to its
repair process. As part of this discussion, we speculate on both the immediate and
wider rami�cations of these phenomena to the e�ciency and success of the search.
Following this discussion, we investigate the role of �tness information within the
search. The discussions in this section are supported by a number of graphs, gener-
ated over 20 repeats of a sub-set of the GenProg TSE 2012 dataset, with improve-
ments to its weak output checking.

Bloat

The �rst, and perhaps, most apparent indicator of unintended behaviour inGenProg
is the continual growth of its patches over time—a widespread phenomenon within

157

SEARCH

1 2 3 4 5 6 7 8 9 10
Generation

0

10

20

30

40

Pa
tc

h
Le

ng
th

Patch Length vs. Generation

Figure 6.2: Patches tend to become longer over time.

the �eld of genetic programming, known as bloat [Langdon and Poli, 1998]. As with
other applications of genetic programming, we observe a steady and sustained in-
crease the size of individuals with each generation, measured by their number of
edit operations, Figure 6.2. More speci�cally, we observed a monotonic increase
in the total number of edit operations within the population with each generation,
Figure 6.3.3

Upon closer inspection of GenProg’s search algorithm, this phenomena is not par-
ticularly surprising, since the mutation operator appends a newly-sampled edit to
the end of each child with a probability equal to the mutation rate; by default, the
mutation rate is set to 1.0, causing all children to grow by a single edit.

In practice, GenProg partially overcomes this problem through the use of delta-
debugging as a minimisation technique. For more details, see Section 4.1.3. How-
ever, this process takes the form of a post-processing step, occurring only once an
acceptable solution has been found by the search. In most cases, this minimisation
stage reduces the size of the patch to a single edit. For the rest of the search process,
however, GenProg takes no active steps to control or reduce bloating within the
population.

3Note, that this phenomena persists regardless of whether crossover is enabled. In fact, this phe-
nomena is further exacerbated when crossover is disabled, since all individuals within the population
are guaranteed to be the same size and to be one edit longer than their predecessor.

158

6.2. THEORETICAL ANALYSIS

1 2 3 4 5 6 7 8 9 10
Generation

100

200

300

400

500

600

Nu
m

. E
di

ts
 in

 P
op

ul
at

io
n

Num. Edits in Population vs. Generation

Figure 6.3: Across all problems, we observe a monotonic increase in the total number
of edit operations contained within the population despite the ability of crossover
to generate smaller individuals.

One may argue that the phenomenon of bloating is irrelevant to the ability of the
search to generate and discover correct solutions, and that the search remains un-
hindered in its presence. Based on observation and analysis of GenProg’s search
algorithm, we believe this is not the case, and that bloat is detrimental to the search
in multiple ways, for the following reasons:

1. Although the edits within the patch may have no e�ect on the outcomes of
the positive test cases, this does not mean that the patched program retains its
original or intended semantics. When combined with a weak testing suite, this
phenomenon allows destructive changes to be introduced into the population
without being detected, and subsequently retained and propagated (since all
edits are conserved).

Over time, as the search �nds and exploits more of the weaknesses within the
testing suite, the individuals within the population inevitably end up accruing
more of these silently destructive edits, and thus, end up further away from
the semantics of the original program. This behaviour places the search at
odds with its implicit assumption, that the semantics of the repaired program
are a short distance away from the faulty program, which allows automated
program repair to be a tractable problem.

159

SEARCH

2. Even in the few cases where the testing suite is perfect at identifying destruc-
tive mutants, the search ends up performing redundant work by evaluating
edits that appear to be neutral. In these cases, the search is unable to use the
results within the cache and so, it must evaluate the mutant as if it were any
other. As a result, we believe the search to be spending most of its limited
resources in evaluating larger, semantically-equivalent patches.

3. Finally, a human study by Fry et al. [2012] demonstrates that the likelihood
of a patch being accepted by a human-developer sharply diminishes as the
size of the patch increases and that such increases in patch length are also
associated with higher maintenance costs.

Accumulation of Neutral Edits

As bloat causes candidate solutions to move further away from the original program
syntactically, the introduction of new edits also drives the program further away
from its original and intended semantics as a result. Moreover, this drift is likely to
be felt most in the bug-a�ected regions of the program, covered by few, if any, pos-
itive test cases, where almost all changes have no e�ect on the outcomes of the test
suite. In such areas, the search will reduce to a random walk, and as a result of bloat,
will continue to accumulate random edits within this region. Consequently, the ma-
jority of the search is spent evaluating either bloated but semantically-equivalent
candidate patches, or patches that involve so many changes that they are likely to
be far away from the intended semantics of the program.

In the absence of e�ective bloat controls, an implicit selective advantage is created
towards larger, more bloated, neutral variants, whose neutral edits are more likely to
survive a crossover event. Consequently, these neutral edits will tend to be selected
together with other such genes, to the e�ect that the genome as a while becomes
selected for bloat. Whilst the minimal tournament sizes (k = 2) used by default
in GenProg’s tournament selection operator should weaken this pressure towards
bloat, it does so at the cost of allowing overtly destructive edits to enter the popu-
lation.

In summary, without e�ective bloat controls, patches will tend to accumulate edits
that are unhelpful within the context of repair, in the best case. In the worst case,
patches will accumulate detrimental edits that silently destroy functionality within
the program and prevent solutions from being found.

Operator Biases

In addition to the problems produced by bloat, we believe that the way in which
GenProg allows multiple edits to be performed at a single statement within the
program leads to subtle biases that ultimately harm its ability to �nd repairs. Since

160

6.2. THEORETICAL ANALYSIS

Figure 6.4: An example of the destructive edit bias. In this example, a single-edit
patch is applied to the original AST, given on the left. This patch replaces the node at
location 1 with the node at location 5. When the child tree is subsequently mutated,
any changes to locations 1, 4 or 5 will have no e�ect. Note, the donor node, coloured
black, may not be the subject of a future mutation operation. Thus, the e�ects of
this replacement operation are permanent on all of its descendants (except in cases
where crossover moves this operation to another child).

the search permits multiple edits to a given statement, a somewhat arbitrary deci-
sion must be made as to how these edits should be interpreted when applying the
patch.

GenProg deals with this dilemma in perhaps the most intuitive way—applying each
edit within the patch in the order in which it appears. However, since the mutation
operator may only introduce new edits at the end of the patch, the set of programs
that may be reached from a given point becomes constrained by the existing con-
tents of that patch.

The most destructive bias introduced by this behaviour is observed when a deletion
or replacement operation is applied to a given statement. In this case, the statement
is no longer addressable by future edits, causing the modi�cation to become frozen.
As a result, the search is allowed to accumulate non-coding edits at the a�ected
site, since all edits after the Delete or Replace are ignored. An example of this
behaviour is illustrated in Figure 6.4. Since all edits are conserved during crossover
and mutation, and given the relatively low selective pressure, this can also result
in functionality loss, particularly within regions lacking positive test case cover-
age. This functionality loss may only be recovered through an increasingly-unlikely
crossover event.

Another less destructive, but nonetheless hindering, consequence of this behaviour
stems from the treatment of append operations. In the event that a donor statement
X is appended before a selected statement S, then a successive append of statement
Y at S will result in the statement sequence S;Y ;X at the original location of S.
Whilst the semantics of this operation seem acceptable, since edits can only be intro-
duced at the end of the patch, the set of reachable programs becomes increasingly
constrained with each append. In the case of the example above, if X and Y are
appended in the wrong order, or an incorrect statement is appended instead, that

161

SEARCH

mistake becomes frozen, save for a unlikely re-arrangement of the genome through
a series of unlikely crossover events. An illustration of this bias is given in Figure
6.5.

162

6.2. THEORETICAL ANALYSIS

Figure 6.5: An example of the append bias. The AST in the top left shows the state of
original, faulty program. The AST in the top right shows the repaired version of that
AST, containing two missing statementsα and β. On the bottom half of the diagram,
we show a repair scenario in which this bias is encountered. In the �rst generation,
α is appended after the statement at location 4, matching its intended position in the
repaired program. In the following generation, β is appended, yielding the incorrect
sequence β;α. From the �rst mistake in the order of append operations, the search
is unable to move backwards to �nd a correct order; incorrect edits will continue to
be accumulate at statement 4.

163

SEARCH

In summary, by allowing multiple edits at a single site, a number of subtle biases
are introduced into the search, limiting its ability to reach solutions as generations
pass.

Limited, Short-Term Memory

As a consequence of the relatively small size of its population, the ability of the
search to implicitly retain useful information about the problem and the possible
nature of a solution is fundamentally and severely restricted. It is therefore the re-
sponsibility of the selection operator to manage the storage of this information, and
to hold onto information useful for solving the problem whilst discarding mislead-
ing or irrelevant information.

For most optimisation problems where population-based algorithms are used, the
role of selection is to identify and exploit high-quality individuals, based on the as-
sumption that such individuals tend to be co-located with other such high quality
solutions. In these cases, selection serves primarily as a positive feedback mecha-
nism aimed at promoting higher-quality solutions.

In the case of automated repair, however, we are purely interested in �nding a correct
solution, and from the perspective of the end-user, there is little to no concept of a
partial solution. Here, �tness purely serves as a means of more e�ciently generating
potential solutions, rather than assessing the quality of a solution. To help the search
craft potential solutions that are more likely to be correct, we believe that �tness
combines elements of both positive and negative feedback:

• Positive Feedback: in theory, �tness helps the search to identify and exploit
partial solutions, identi�ed by their passing of a sub-set of the negative test
cases. In practice, when adequate test suites are used, patches that pass any
of the negative test cases are very rarely encountered.

• Negative Feedback: whilst positive feedback remains largely unused for
the majority of the search, the primary feedback mechanism comes from the
avoidance of destructive patches, which cause previously passing test cases
to fail.

Despite the fact that the search largely makes use of negative feedback in selecting
parents, the population-based nature of the algorithm is almost entirely oriented
towards positive feedback, which is rarely used. Populations serve relatively well
as retainers of positive information (i.e., potential partial solutions) since they are
very likely to persist from one generation to the next, and thus be exploited to �nd
promising solutions. However, populations also make for a woefully-ine�ective
means of storing and exploiting useful information for problems that are largely
driven by negative feedback mechanisms. The reason for this ine�ectiveness is that
negative feedback is only used to in�uence what is not contained in the population.
Given the vast size of the search space, the very small size of the population (40 indi-
viduals, by default), and the substantial cost of evaluating candidate solutions, all of

164

6.2. THEORETICAL ANALYSIS

this negative feedback information—indicating that certain edits are destructive—
is lost between generations. One approach to tackling this problem would be to
avoid solutions that are known to be destructive, in a similar manner to Tabu search
[Glover, 1986]. For reasons given in Section 6.4, we decided not to introduce such
functionality into GenProg.

The consequences of this lack of memory are most obvious during mutation, where-
upon previously encountered destructive edits are given equal consideration when
appending a new edit to the patch as those that have yet to be explored. As a re-
sult, the algorithm reintroduces known (but unrecorded) destructive edits into the
population, causing potentially useful information about partial solutions to be cor-
rupted and discarded. Even in cases where unexplored edits are added to the patch
during mutation, if those edits are destructive, which approximately two thirds of
edits are [Schulte et al., 2013], then information will also be corrupted.

In summary, given the nature of the automated program repair search landscape and
its heavy emphasis on the avoidance of destructive patches—rather than the pursuit
of promising patches—using a population to record problem information appears to
be misguided.

Summary

In combination, we believe that these phenomena result in a number of unintended
e�ects, all of which combine to signi�cantly harm the e�ectiveness of the search
algorithm in numerous ways:

• Inability to reach certain repairs: as a consequence of operator biases, and
further compounded by the problem of bloat, it becomes increasingly di�cult
for the search to reach certain repairs with each passing generation, since
the presence of certain edits within a patch preclude the existence of others.
Futhermore, mutations at areas within of the program that lack positive test
case coverage, which also happen to be the most likely to be selected, may
silently destroy functionality, preventing a repair from being found.

• Sensitivity to initial conditions: as a side e�ect of the search’s inability
to reach certain repairs over time, the success of the search becomes highly
dependent on the outcome of a series of chance events in the early genera-
tions of the search. If destructive and restrictive edits successfully invade the
population, the search is unlikely to be able to recover.

• Ine�cient usage of test case evaluations: the inability of the search to
explicitly remember and avoid destructive edits, combined with the highly
limited memory capacity of its population, leads to corruption of partial so-
lutions and discarding of useful negative-space information.

• Majority of resources are spent on unlikely repairs: due to bloat, the
search spends the majority of its time evaluating long and highly unlikely

165

SEARCH

patches, rather than focusing its e�orts on patches that are closer to the orig-
inal program.

• Poor reliability: as a result of the above symptoms of these phenomena,
we expect to see a decreasing (marginal) probability of success as the search
progresses, leading to lower levels of reliability.

Ultimately, these symptoms stem from certain design decisions and trade-o�s within
the design of GenProg’s algorithm, including its ability to perform multiple edits
at a given site, and its treatment of the problem as an optimisation problem, rather
than a decision problem.

6.3. Empirical Study

Having highlighted a number of potential issues and ine�ciencies associated with
GenProg’s search algorithm—an algorithm similar in all important aspects to most
other evolutionary APR techniques—here, we conduct an empirical study to explore
whether these claims hold in practice. In doing so, we seek to produce a better
understanding of the workings (and shortcomings) of the evolutionary repair pro-
cess.

To investigate the e�ects, if any, of bloat and operator biases on the performance of
the search, we answer following questions:

• RQ4A: Does bloat hinder the ability of the search to e�ciently �nd repairs?

• RQ4B: Does removing the ability to perform multiple edits at a given site
improve the e�ciency and reliability of the search?

After exploring these e�ects, we turn our attention to the role of �tness information
within the search for multiple-edit repairs. To conduct this investigation, we decon-
struct the notion of �tness in a systematic, stepwise manner by answering each of
the research questions below:

• RQ5A: Does selecting individuals to serve as parents at random, rather than
in accordance to their �tness, have a measurable impact on the performance
of the search?

• RQ5B: Does restricting parent selection to non-destructive individuals (i.e.,
those which pass all of the positive tests), and choosing from amongst them
at random a�ect the performance of the search?

• RQ5C: Does selecting non-destructive individuals as parents on the basis of
the number of negative tests that they pass—instead of choosing between
them at random—a�ect the performance of the search?

166

6.3. EMPIRICAL STUDY

Methodology

To answer each of these research questions, we extended GenProg, and produced
a suitable con�guration for each question. To reduce the cost of answering these
questions, we used asynchronous patch evaluation, and weak equivalency checking,
described in Section 4.2. Using these con�gurations, we collected performance data
for each research question by a number of repeat repair trials over a set of 21 bug
scenarios.

To balance the accuracy of the results against the staggering time and computa-
tional resources required to conduct extensive program repair trials, we performed
10 repeat trials for each bug-con�guration; in total, we conducted 1260 individual
trials.

For each research question, we measure the performance of the associated con�gu-
ration against GenProg’s standard con�guration, in terms of the metrics described
below:

• We measure the e�ectiveness of the con�guration by the fraction of bug sce-
narios for which it was able to �nd a repair.

• For bug-con�gurations where a repair was found, we measure the reliability

as the fraction of runs for that bug-con�guration that yielded a repair.

• Additionally, we measure a modi�ed version of the previously used NCP met-
ric, a measure of the average number of patch evaluations required to �nd a
repair. The �rst of these metrics, NCPU , measures the average number of
unique candidate patch evaluations. By measuring unique evaluations, rather
than all evaluations, we gain a more representative measure of performance
for con�gurations that are more likely to revisit previously evaluated patches.
The second, ER, measures the e�ciency of the search by the number of unique
patch evaluations per run (including runs for which a repair was not found).
This measure gives a more reliable estimate of the e�ciency of a con�guration
over multiple runs.

Except where explicitly stated, we used identical con�gurations and termination
criteria for each experiment. An outline of this con�guration is provided in Table 6.1.
The settings within this con�guration are based on the default settings for GenProg,
which have been previously used to conduct research [Le Goues et al., 2012a,c]. For
the purposes of this study, we chose to enforce an explicit limit on the number of
unique candidate patch evaluations—rather than restrict the number of generations,
as is de facto practice [Le Goues et al., 2012a,b,c; Weimer et al., 2009],—in order to
more fairly represent the performance of algorithms that revisit solutions.

As with all of the experiments conducted within this thesis, a complete replication
package is provided using RepairBox. Details on replicating the results of this study,
along with the other studies within the thesis, can be found in Appendix A. By
using RepairBox, we are able to provide a transparent and controlled execution
environment without compromising performance.

167

SEARCH

Population Size 40
Fault Localisation GenProg (10/1)
Selection Tournament (k = 2)
Crossover Rate 100%
Mutation Rate 100%

Termination Criteria

Num. Unique Candidates 400

Table 6.1: The baseline parameters of the algorithm used within each run.

CPU: Intel Xeon E5-2673 v3 (4 cores)
OS: Ubuntu Server 16.04 LTS (64-bit)
Kernel: 4.4.0-77-generic
Docker: 1.12.6, build 78d1802
RAM: 8 GB
Storage: 64 GB, SSD
Cost: $0.249/hr

Table 6.2: Speci�cations of the Microsoft Azure F4 compute instances used to collect
the data for this study.

To run these experiments, we used a large number of parallel F4 instances cloud
computing instances on the Microsoft Azure cloud computing platform. Speci�ca-
tions for these instances are given in Table 6.2.

Benchmarks

In selecting a suitable set of bug scenarios for this study, we primarily considered
three factors. The �rst is that performing 1260 repeat repair trials over the bug sce-
narios should be neither prohibitively time-consuming, nor exorbitantly expensive.
The second is that the test suite should meet the minimal set of requirements laid out
in Chapter 3; bug scenarios that fail to thoroughly check the outputs and resulting
state of the program should not be considered. From earlier experiments, we found
that including such benchmarks—as have been used to conduct previous studies on
the e�ciency of GenProg [Le Goues et al., 2012a,c; Oliveira et al., 2016; Weimer
et al., 2009]—can produce misleading results. In such cases, variants of GenProg
which push the search towards regions of the space likely to contain plausible, but
incorrect, solutions are assumed to be better performing variants. When one con-
trols for test suite quality, one �nds that these variants lead to a lower performance.
The third and �nal factor is that the bug scenarios should include, but not necessar-
ily be restricted to, bugs whose patches require multiple edits. Without the inclusion
of such bugs, one cannot assess the e�ectiveness of the search technique when it
comes to multi-edit bugs—bugs which have been largely been beyond the reach of

168

6.3. EMPIRICAL STUDY

search-based repair.

With these considerations in mind, we �rst assessed a number of publicly avail-
able datasets of real-world bugs: ManyBugs [Le Goues et al., 2015], Code�aws [Tan
et al., 2017], and the GenProg TSE 2012 [Le Goues et al., 2012b] benchmarks. We
found that the bug scenarios within the ManyBugs dataset exhibited excessively-
long compilation and test suite evaluation times, and that the majority of test suites
failed to meet our minimum quality requirements (many exclusively consider the
exit status of the program). We encountered similar concerns of quality in the
GenProg TSE 2012 benchmarks. On inspection of the subjects within the Code-
�aws dataset, we determined that GenProg would be highly unlikely to �nd repairs
for any of its bugs, owing to the small size of the programs (mostly less than 20 lines
of code).

Given the extensive di�culties involved in using naturally-occurring bugs, we turned
our attention to synthetic bugs. Since the research questions asked in this study are
purely concerned with the process of searching for patches, rather than the ability
to solve real bugs, we believe this decision to be sound. We �rst explored using a
sub-set of the C bug scenarios within the Software Infrastructure Repository, but
found that their vast search space reduced the probability of repair to such a point
that any signi�cant di�erence in performance between search techniques would be
impossible to gauge. Although the programs used by these bug scenarios are smaller
than those used in previous APR research, it is important to note that in these cases,
the search was restricted to a single �le within the project—usually containing a
few hundred lines of code (and not the millions of lines of code used by the entire
project). In contrast, the programs within the SIR are collapsed into a single �le
containing thousands of lines of code.

169

SEARCH

Algorithm 5: Test Suite Reduction
ReduceTestSuite(tests, lines, line_cov, test_cov) begin

selection← ∅ ;
line_cov ← {(l, 0) | l ∈ lines} ;
for i in 1..k do

for l1 in lines do
candidates← CoveringTests(l1) ;
poor_cov ← {t | t ∈ tests ∧ line_cov[t] < i} ;
if line_cov[l1] ≥ i or candidates = ∅ then

continue

end

best_candidates← ∅ ;
best_score← 0 ;
for t in candidates do

score← #{l | l2 ∈ poor_cov ∧ Covers(t, l2) } ;
if score > max_score then

best_score← score ;
best_candidates← {t} ;

else if score = max_score then
best_candidates← best_candidates ∪ {t} ;

end

end

t← RandomChoice(best_candidates) ;
UpdateCoverage(line_cov, test_cov[t]) ;
selection← selection ∪ {t} ;
tests← tests \ {t} ;

end

end

return selection

end

Ultimately, we found that when combined with Pythia (see Section 3.2) to produce
a high-quality oracle, the programs within the Siemens benchmarks provide all of
the desired characteristics. Although each program is only several-hundred lines
of code in length, the corresponding size of the search space matches those used
in previous studies [Le Goues et al., 2012a, 2015; Long and Rinard, 2015; Mechtaev
et al., 2016]. The test suites used by these programs, containing thousands of tests,
are unlike those used in previous work, however. To reduce the burden involved in
evaluating these test suites, and to produce a test suite closer to those encountered
in real-world programs, we devised and used a simple test suite reduction heuristic.
This algorithm, Algorithm 5, uses a fast, stochastic greedy search to ensure that,
where possible, each line within the program is covered by at least k = 5 tests.
Using this algorithm, we were able to reduce the size of the test suites by roughly
a factor of 100. This substantially diminished level of coverage appeared to have

170

6.3. EMPIRICAL STUDY

Program # LOC # Stmts # Tests # Tests
′

tcas 135 136 1608 20
totinfo 230 271 1052 25
replace 494 372 5542 42
printtokens 342 292 4073 14
printtokens2 388 340 4115 18
schedule 249 194 2650 15
schedule2 273 217 2710 19

Table 6.3: A table of the subject programs used to conduct this study. # LOC

describes the number of source code lines in the original program, as measured
by cloc. # Stmts speci�es the number of statements within the GenProg’s pre-
processed AST representation of the program. # Tests gives the size of the original
test suite for the program.

no discernible e�ect on the quality of patches produced during the study—a phe-
nomenon we intend to investigate more closely in future work. Details of the seven
programs used as subjects for this study, together with the sizes of their original and
reduced test suites, and their number of lines of code, are given in Table 6.3.

Upon inspection of original bug scenarios within the Siemens subject programs, we
found that GenProg was unable to �x most of them—owing to the granularity of its
repair model—and that most �xes required only a single edit. To gain an understand-
ing of the ability of GenProg’s algorithm to compose multiple-edit patches, and to
ensure our understanding was based on bugs that are solvable within GenProg’s
search space, we manually seeded bugs into these programs. For each of the seven
programs, we seeded a one-line bug, a two-line bug, and a three-line bug, giving a
total of 21 bug scenarios, balanced across the di�erent bug sizes.

To ensure that the seeded bugs could be solved, we ensured that a �x could be gen-
erated from the source code in the faulty �le. For example, to seed a bug scenario
that required the insertion of a missing statement, we deleted a statement in the
program, and ensured that a redundant copy of that statement could be found else-
where (and that the redundant copy was covered by the test suite). That is, for each
seeded bug scenario, we devised a repair within GenProg’s search space, and then
applied the inverse of the �x to the program. We also ensured that all mutations
to the program resulted in the failure of at least one test within the reduced test
suite.

Instructions on �nding and replicating these bug scenarios are given in Appendix
A.

171

SEARCH

Results

A summary of the results across all of the studied con�gurations is aggregated into
the following tables: Table 6.4 describes which bugs were successfully repaired at
least once for each con�guration. We �nd that the baseline con�guration is unable
to repair any bugs that contain more than a single fault. Across all con�gurations,
only one bug containing two faults was repaired, and no bugs containing three faults
were repaired. Table 6.5 shows the observed reliability of each con�guration. Table
6.6 gives the median number of unique candidate patches required to �nd a repair
for each bug-con�guration. Table 6.7 speci�es the cost of �nding a repair, measured
by the number of unique candidate patch evaluations across all runs, including those
which failed to yield a patch, divided by the number of successful runs.

For the remainder of this section, we use these results to provide answers to each of
our research questions.

172

6.3. EMPIRICAL STUDY

B
u
g
S
c
e
n
a
r
i
o

B
a
s
e
l
i
n
e

B
l
o
a
t
C
o
n
t
r
o
l

R
e
s
t
r
i
c
t
e
d

S
h
a
d
o
w

N
e
u
t
r
a
l

N
e
u
t
r
a
l
N
e
g
a
t
i
v
e

re
pl
ac

e-
on

e
X

X
X

X
X

X
re
pl
ac

e-
tw

o
re
pl
ac

e-
th

re
e

pr
in
tt

ok
en

s-
on

e
X

X
X

X
X

X
pr
in
tt

ok
en

s-
tw

o
pr
in
tt

ok
en

s-
th

re
e

pr
in
tt

ok
en

s2
-o
ne

X
X

pr
in
tt

ok
en

s2
-t
w
o

pr
in
tt

ok
en

s2
-t
hr

ee
sc
he

du
le
-o
ne

X
X

X
X

X
X

sc
he

du
le
-t
w
o

sc
he

du
le
-t
hr

ee
sc
he

du
le
2-
on

e
X

X
X

X
X

X
sc
he

du
le
2-
tw

o
sc
he

du
le
2-
th

re
e

to
ti
nf

o-
on

e
X

X
X

to
ti
nf

o-
tw

o
to

ti
nf

o-
th

re
e

tc
as
-o
ne

X
X

X
X

X
X

tc
as
-t
w
o

X
tc
as
-t
hr

ee

S
u
c
c
e
s
s
f
u
l

5
6

5
6

7
7

Ta
bl

e
6.4

:A
su

m
m

ar
y

of
th

e
bu

gs
fo

rw
hi

ch
a

re
pa

ir
w

as
fo

un
d

at
le

as
to

nc
e

ov
er

th
e

te
n

ru
ns

,f
or

ea
ch

co
n�

gu
ra

tio
n.

X
in

di
ca

te
st

ha
ta

t
le

as
to

ne
pa

tc
h

w
as

fo
un

d
fo

rt
he

gi
ve

n
bu

g-
co

n�
gu

ra
tio

n.

173

SEARCH

B
u
g
S
c
e
n
a
r
i
o

B
a
s
e
l
i
n
e

B
l
o
a
t
C
o
n
t
r
o
l

R
e
s
t
r
i
c
t
e
d

S
h
a
d
o
w

N
e
u
t
r
a
l

N
e
u
t
r
a
l
N
e
g
a
t
i
v
e

re
pl
ac

e-
on

e
30

%
30

%
20

%
20

%
10

0%
10

0%
re
pl
ac

e-
tw

o
—

—
—

—
—

—
re
pl
ac

e-
th

re
e

—
—

—
—

—
—

pr
in
tt

ok
en

s-
on

e
60

%
60

%
70

%
60

%
70

%
80

%
pr
in
tt

ok
en

s-
tw

o
—

—
—

—
—

—
pr
in
tt

ok
en

s-
th

re
e

—
—

—
—

—
—

pr
in
tt

ok
en

s2
-o
ne

—
—

—
—

10
%

10
%

pr
in
tt

ok
en

s2
-t
w
o

—
—

—
—

—
—

pr
in
tt

ok
en

s2
-t
hr

ee
—

—
—

—
—

—
sc
he

du
le
-o
ne

20
%

20
%

20
%

20
%

20
%

20
%

sc
he

du
le
-t
w
o

—
—

—
—

—
—

sc
he

du
le
-t
hr

ee
—

—
—

—
—

—
sc
he

du
le
2-
on

e
30

%
20

%
30

%
50

%
30

%
30

%
sc
he

du
le
2-
tw

o
—

—
—

—
—

—
sc
he

du
le
2-
th

re
e

—
—

—
—

—
—

to
ti
nf

o-
on

e
—

10
%

—
—

10
%

10
%

to
ti
nf

o-
tw

o
—

—
—

—
—

—
to

ti
nf

o-
th

re
e

—
—

—
—

—
—

tc
as
-o
ne

10
0%

10
0%

90
%

10
0%

10
0%

90
%

tc
as
-t
w
o

—
—

—
10

%
—

—
tc
as
-t
hr

ee
—

—
—

—
—

—

Ta
bl

e6
.5:

A
co

m
pa

ris
on

of
th

er
el

ia
bi

lit
y

of
di

�e
re

nt
co

n�
gu

ra
tio

ns
fo

re
ac

h
bu

g
sc

en
ar

io
.T

he
pr

es
en

ce
of

an
“—

”s
ym

bo
li

nd
ic

at
es

th
at

no
pa

tc
he

sw
er

e
fo

un
d

fo
rt

ha
tg

iv
en

bu
g-

co
n�

gu
ra

tio
n.

174

6.3. EMPIRICAL STUDY

B
u
g
S
c
e
n
a
r
i
o

B
a
s
e
l
i
n
e

B
l
o
a
t
C
o
n
t
r
o
l

R
e
s
t
r
i
c
t
e
d

S
h
a
d
o
w

N
e
u
t
r
a
l

N
e
u
t
r
a
l
N
e
g
a
t
i
v
e

re
pl
ac

e-
on

e
16

6.0
85

.0
63

.5
93

.5
14

4.0
81

.5
re
pl
ac

e-
tw

o
—

—
—

—
—

—
re
pl
ac

e-
th

re
e

—
—

—
—

—
—

pr
in
tt

ok
en

s-
on

e
13

.5
13

.5
14

.0
13

.5
14

.0
37

.0
pr
in
tt

ok
en

s-
tw

o
—

—
—

—
—

—
pr
in
tt

ok
en

s-
th

re
e

—
—

—
—

—
—

pr
in
tt

ok
en

s2
-o
ne

—
—

—
—

10
9.0

29
6.0

pr
in
tt

ok
en

s2
-t
w
o

—
—

—
—

—
—

pr
in
tt

ok
en

s2
-t
hr

ee
—

—
—

—
—

—
sc
he

du
le
-o
ne

31
.0

31
.0

31
.0

31
.0

31
.0

31
.0

sc
he

du
le
-t
w
o

—
—

—
—

—
—

sc
he

du
le
-t
hr

ee
—

—
—

—
—

—
sc
he

du
le
2-
on

e
39

.0
34

.5
39

.0
60

.0
39

.0
39

.0
sc
he

du
le
2-
tw

o
—

—
—

—
—

—
sc
he

du
le
2-
th

re
e

—
—

—
—

—
—

to
ti
nf

o-
on

e
—

32
5.0

—
—

19
8.0

18
3.0

to
ti
nf

o-
tw

o
—

—
—

—
—

—
to

ti
nf

o-
th

re
e

—
—

—
—

—
—

tc
as
-o
ne

26
.5

26
.5

20
.0

26
.5

26
.5

20
.0

tc
as
-t
w
o

—
—

—
83

.0
—

—
tc
as
-t
hr

ee
—

—
—

—
—

—

Ta
bl

e
6.6

:A
su

m
m

ar
y

of
th

e
m

ed
ia

n
nu

m
be

ro
fu

ni
qu

e
ca

nd
id

at
e

pa
tc

h
ev

al
ua

tio
ns

re
qu

ire
d

to
�n

d
a

re
pa

ir,
fo

re
ac

h
bu

g-
sc

en
ar

io
.T

he
pr

es
en

ce
of

an
“—

”s
ym

bo
li

nd
ic

at
es

th
at

no
pa

tc
he

sw
er

e
fo

un
d

fo
rt

ha
tb

ug
-c

on
�g

ur
at

io
n.

175

SEARCH

B
u
g
S
c
e
n
a
r
i
o

S
t
a
n
d
a
r
d

B
l
o
a
t
C
o
n
t
r
o
l

R
e
s
t
r
i
c
t
e
d

S
h
a
d
o
w

N
e
u
t
r
a
l

N
e
u
t
r
a
l
N
e
g
a
t
i
v
e

re
pl
ac

e-
on

e
10

87
.33

10
89

.00
16

63
.50

16
93

.50
16

7.4
0

11
5.0

0
re
pl
ac

e-
tw

o
—

—
—

—
—

—
re
pl
ac

e-
th

re
e

—
—

—
—

—
—

pr
in
tt

ok
en

s-
on

e
33

1.5
0

33
6.3

3
27

7.8
6

31
0.6

7
26

4.0
0

17
3.1

3
pr
in
tt

ok
en

s-
tw

o
—

—
—

—
—

—
pr
in
tt

ok
en

s-
th

re
e

—
—

—
—

—
—

pr
in
tt

ok
en

s2
-o
ne

—
—

—
—

37
09

.00
38

96
.00

pr
in
tt

ok
en

s2
-t
w
o

—
—

—
—

—
—

pr
in
tt

ok
en

s2
-t
hr

ee
—

—
—

—
—

—
sc
he

du
le
-o
ne

16
31

.00
16

31
.00

16
31

.00
16

31
.00

16
31

.00
16

31
.00

sc
he

du
le
-t
w
o

—
—

—
—

—
—

sc
he

du
le
-t
hr

ee
—

—
—

—
—

—
sc
he

du
le
2-
on

e
97

2.6
7

16
34

.50
97

2.6
7

47
7.8

0
97

6.6
7

97
2.6

7
sc
he

du
le
2-
tw

o
—

—
—

—
—

—
sc
he

du
le
2-
th

re
e

—
—

—
—

—
—

to
ti
nf

o-
on

e
—

39
25

.00
—

—
37

98
.00

37
83

.00
to

ti
nf

o-
tw

o
—

—
—

—
—

—
to

ti
nf

o-
th

re
e

—
—

—
—

—
—

tc
as
-o
ne

58
.00

40
.70

61
.33

36
.40

45
.30

35
.33

tc
as
-t
w
o

—
—

—
36

83
.00

—
—

tc
as
-t
hr

ee
—

—
—

—
—

—

Ta
bl

e
6.7

:A
n

ov
er

vi
ew

of
th

e
co

st
of

�n
di

ng
a

pa
tc

h
fo

re
ac

h
bu

g-
co

n�
gu

ra
tio

n,
m

ea
su

re
d

by
th

e
to

ta
ln

um
be

ro
fu

ni
qu

e
ca

nd
id

at
e

pa
tc

h
ev

al
ua

tio
ns

,a
cr

os
sa

ll
ru

ns
,d

iv
id

ed
by

th
e

nu
m

be
ro

fr
un

st
ha

tw
er

e
su

cc
es

sf
ul

.B
ug

-c
on

�g
ur

at
io

ns
w

ith
an

“—
”s

ym
bo

li
nd

ic
at

e
th

at
no

pa
tc

he
sw

er
e

fo
un

d
du

rin
g

an
y

of
th

e
ru

ns
.

176

6.3. EMPIRICAL STUDY

RQ4A: Does bloat hinder the ability of the search to e�ciently �nd re-

pairs?

We �rst introduce a variant of the search algorithm, �tted with active bloat controls.
One way of doing this is to break the conservation of edits within the mutation oper-
ator by allowing edits to be removed, through the introduction of an Undo operator.
To add such an operator, however, we would need to arbitrarily determine a suit-
able probability of its application, which opens the door to over�tting the particular
benchmarks being studied. Since the majority of problems that GenProg has been
applied to can be solved within a single edit, one could engineer an Undo probability
such that all patches within the population remain at this particular size.

A simpler method to achieve bloat control, less prone to over�tting, is to replace the
selection operator with a double-tournament selection operator, based on the non-
parametric parsimony pressure techniques introduced by Luke and Panait [2002].
Rather than drawing k individuals at random from the population and choosing
the best amongst them to act as a parent for the next generation—as in standard
tournament selection—individuals are also compared on �tness, through a series of
“quali�er” tournaments.

• k “quali�er” tournaments are carried out, in order to select the k individuals
that will compete in the �nal “�tness” tournament.

• Each “quali�er” tournament selects two individuals at random from the pop-
ulation, and chooses the smallest as the winner, with probability Sp/2, where
Sp is a real number between 1.0 and 2.0. Setting Sp to 2.0 ensures the small-
est individual is always picked, whilst 1.0 chooses between the individuals at
random.

• The “�tness” tournament selects the individual with the highest �tness as the
winner, and uses random selection as a tie-breaker.

After introducing double-tournament selection, we compared the performance met-
rics of the resulting algorithm against the baseline. We found that double-tournament
selection was able to �x an additional bug scenario compared to the baseline (5 vs.
6), as shown in Table 6.4. Furthermore, all bugs that are repaired by the baseline are
also repaired when double-tournament selection is used; double-tournament selec-
tion dominates the baseline, in terms of e�ectiveness.

We observe little to no di�erence in reliability between double-tournament selection
and the baseline, Table 6.5. For scenarios where reliability can be compared, we see
a minimal 10 percentage point di�erence.

In terms of e�ciency, as measured by NCPU , double-tournament selection domi-
nates the baseline. Double-tournament selection exhibits a lower NCPU for two of
the �ve comparable bugs, and an identical NCPU for the remaining three. When
measured by expense, the results are less clear. Double-tournament selection is
marginally worse in two cases (1087.33 vs. 1089.00, and 331.50 vs. 336.33; Table

177

SEARCH

0 1 2 ... N - 1

R 12 NULL NULL ... D

Figure 6.6: Our restricted representation implicitly encodes individuals as a �xed
length list of optional edits P . Each entry of the list, Pi, describes the edit, if any,
that should be applied to the statement with number i.

6.7), substantially worse in one (927.67 vs. 1634.50), identical in one, and improved
in one (58.00 vs. 40.70).

Taken together, these results demonstrate little to no improvement in performance,
suggesting that traditional bloat control measures may be ine�ective withinGenProg’s
search space. This may be down to the need for more careful, but expensive, param-
eter tuning. Alternatively, it may be that bloat controls further hinder the memory
capabilities of the population. As the population contains fewer edits, it also retains
less information about the solution space. In summary, although the search appears
to be most e�ective during its earliest stages, the use of traditional bloat control
measures appear to be unsuccessful in increasing reliability or e�ciency.

RQ4B: Does removing the ability to perform multiple edits at a given

site improve the e�ciency and reliability of the search?

To determine the e�ects of removing the ability to perform multiple edits at a single
location, we needed to introduce a slightly-modi�ed representation, and an associ-
ated set of operators, all ensuring that no more than a single edit could be made at
a given site. Instead of encoding the patch as an arbitrary-length sequence of edit
operations, we e�ectively represent the patch as a �xed length list of edits P , as
illustrated in Figure 6.6. Each entry of the list, Pi, describes the edit ei that should
be applied at particular location i. The absence of an edit at a particular site is de-
noted by a NULL edit. In practice, to avoid high memory costs, this representation is
realised by placing certain constraints on variable-length edit sequences.

To accommodate these changes, we replace the standard mutation operator used by
GenProg with a uniform mutation operator, which replaces any existing edit at a
given statement with a newly sampled one. Similarly, we replace GenProg’s stan-
dard, variable-length one-point crossover with a symmetrical uniform-crossover op-
erator, outlined in Figure 6.7. Each crossover event takes a pair of parent patches
as input (x, y), and generates a pair of children (a, b), by iterating through each
modi�able statement s, and assigning the edit at s from either parent to x, and the
other to y, by selecting at random.

Compared against the baseline e�ectiveness, we �nd that the restricted con�gura-
tion solved the same set of bugs as the baseline. We observe little to no di�erence
in reliability when the restricted con�guration is used: for two out of �ve bugs, re-
liability is the same; for one out of �ve, the restricted con�guration is minimally

178

6.3. EMPIRICAL STUDY

A B C D

R 12 NULL R 12 NULL

NULL A 13 A 13 NULL

NULL NULL NULL NULL

NULL NULL NULL NULL

….

D NULL NULL D

Figure 6.7: Uniform crossover takes two parents, A and B, and generates a pair of
symmetrical children, C and D.

better; for the remaining two bugs, the baseline con�guration is minimally better.
In terms of e�ciency, when measured by NCPU , we observe an identical e�ciency
for two bugs, an improvement for two bugs (166.0 vs. 63.5, and 20.0 vs. 26.5; Table
6.6), and a slight reduction for one bug (13.5 vs. 14.0). When e�ciency is measured
using the expense metric, we see a worse performance for two bugs (1087.33 vs.
1663.50, and 58.00 vs. 61.33; Table 6.7), an identical performance for two bugs, and
an improvement for one bug (331.50 vs. 277.86).

In summary, whilst restricting the search to only a single edit at each site fails to
produce any sizeable improvements in performance, it also appears to have little
negative e�ect. This small change substantially reduces the size of the search land-
scape, and in practice, prevents few bugs from being patched. This observation can
be better exploited by search techniques which are not population based.

RQ5A: Does selecting individuals to serve as parents at random, rather

than in accordance to their �tness, have a measurable impact on the

performance of the search?

Building on previous studies showing that random search outperform genetic algo-
rithms, here we determine whether this result was due to any exploitable informa-
tion provided by �tness values, or if it was largely due to di�ering search spaces—in
the previous study of random search [Qi et al., 2014], RSRepair only considered sin-
gle edit patches—and the ability to terminate on the �rst instance of failure.

To perform this experiment, we simply ran an otherwise identical version of GenProg’s
search algorithm, except with its parent selection replaced by random selection.

From the results in Table 6.4, we see that random search dominates the baseline in
terms of e�ectiveness; random search �xes all the bugs �xed by the baseline, plus
tcas-two. Furthermore, of all the con�gurations we investigated, random search

179

SEARCH

was the only technique that found a solution to a multi-edit bug. It may be the case
that the bug in question, tcas-two, exhibits a particularly deceptive search space,
ill-suited to optimisation techniques.

In terms of reliability, we observe little di�erence between random search and the
baseline: random search was minimally better for one bug, minimally worse for two,
and identical for the remaining two bugs on which it can be compared.

When comparing the e�ciency of random search and the baseline, we see mixed
results. When measured by NCPU , random search is better in one case (166.0 vs.
93.5; Table 6.6), worse in one (39.0 vs. 60.0), and identical for the rest. In terms of
the expense metric, the baseline is outperformed in three cases (331.50 vs. 310.67,
972.67 vs. 477.80, and 58.00 vs. 36.40; Table 6.7), better in one case (1087.33 vs.
1693.50), and identical in one case.

In summary, these results suggest that GenProg’s search algorithm is no more ef-
fective than selecting patches at random. Overall, random search appears to exhibit
a stronger performance than the baseline.

RQ5B: Does restricting parent selection to non-destructive individu-

als (i.e., those which pass all of the positive tests), and choosing from

amongst them at random a�ect the performance of the search?

Having shown that �tness information either has no e�ect on the search, or that
it actively misleads it, we explore two variants of GenProg’s �tness function, de-
signed to more aggressively prune and exploit the search space. In this experiment,
we examine whether the algorithm would be better served by strictly selecting neu-
tral edits. Or, put another way, we ask whether tolerating destructive patches (i.e.,
patches which cause passing tests to fail) is bene�cial to the search. To do so, we
introduce a variant of GenProg wherein the default parent selection method is re-
placed by a pair of successive selection operators: �rstly, the population is reduced
to those candidates which pass all of the positive test cases; from this restricted pool,
n individuals are sampled at random, with replacement.

When compared to the baseline, we �nd that this neutral con�guration �nds patches
for a greater number of bugs (5 vs. 7; Table 6.4). Speci�cally, the neutral con�gura-
tion successfully �nds patches for all of the single-edit bugs, which includes the set
of all bugs repaired by the baseline. In all cases, the reliability of the neutral con-
�guration is higher (30% vs. 100%, and 60% vs. 70%; 6.5) than or equal to that of the
baseline con�guration. In terms of NCPU , we observe little di�erence in e�ciency,
but a more pronounced improvement is observed when e�ciency is measured by
expense: for the �ve bugs on which e�ciency can be compared, the neutral con�g-
uration is better for three (1087.33 vs. 167.40, 331.50 vs. 264.00, 972.67 vs. 477.80;
Table 6.7), and identical for the remaining two.

The substantial performance improvements stemming from restricting selection to
only those solutions which do not fail any positive test cases suggests that detailed

180

6.4. GREEDY ALGORITHM

positive test case information is not particularly useful to the search. This �nding,
that the search should only pursue non-lethal changes, o�ers room for signi�cant
optimisation: one can use test case prioritisation to order the positive test cases, thus
minimising the number of test case evaluations (i.e., regret) necessary to identify a
lethal edit.

RQ5C: Does selecting non-destructive individuals as parents on the ba-

sis of the number of negative tests that they pass—instead of choosing

between them at random—a�ect the performance of the search?

Building on our �ndings from the previous experiment, showing that the search is
more performant when restricted to selecting from amongst patches which do not
fail any of the positive tests, we explore whether negative test case outcomes con-
tribute to the success of the search. To determine the contribution of negative test
outcomes, if any, we modi�ed the con�guration introduced in the previous experi-
ment to perform a tournament selection between non-destructive patches, based on
the number of passing negative tests.

In terms of e�ectiveness, we �nd no di�erence between the neutral negative and
neutral con�gurations: each technique solves the same set of bugs. Similarly, we
�nd little di�erence between the reliability of the two con�gurations: in one case,
the neutral negative con�guration is minimally better; in another case, the neutral
con�guration is superior, and for the remaining cases, both con�gurations are iden-
tical. We observe di�erences in the e�ciency of the two con�gurations, as measured
by the expense metric. For �ve out of seven bugs, the neutral negative con�guration
is superior, in one case it is worse, and for the remaining case, it is identical.

In summary, these results suggest that knowledge of negative test outcomes is useful
and that it may be used to enhance the e�ciency of the search. When the search is
used with a higher resource limit, beyond the default limit used by GenProg, this
increased e�ciency may also translate into a higher e�ectiveness.

6.4. Greedy Algorithm

As we demonstrated in our empirical study, the performance characteristics of the
search can be improved through certain modi�cations to its various parameters and
components. However, such parameter tweaks are a cheap way of addressing the
de�ciencies of GenProg’s genetic algorithm—they ignore the deeper cause of those
de�ciencies. Improving the genetic algorithm along one dimension often degrades it
along another. For instance, we can bolster the memory of the search by increasing
the size of the population, but doing so is likely to reduce the rate of convergence.
Similarly, we can control bloat by introducing controls such as double-tournament
selection, but doing so also causes information about the problem, implicitly en-
coded in the population, to be lost.

181

SEARCH

Crucially, our study shows that, for the most part, the search performs better when
it only considers whether a candidate solution passes or fails any of its positive test
cases, and how many of its negative test cases it passes. Restricting the search to
patches which do not degrade existing functionality—as measured by the positive
test cases—allows it to operate with greater e�ectiveness and e�ciency. We also
found that selecting from amongst potential parents on the basis of the number
of negative test cases that they pass can lead to further gains in e�ectiveness and
e�ciency.

Motivated by these �ndings, here we propose the use of a form of greedy algorithm
to conduct search-based program repair. Since we found little to no degradation
to performance by restricting the search to considering only a single edit at each
location, our algorithm exploits this observation to reduce the size of its search
space.4 Our technique allows the space to be explored more e�ciently, with the
bulk of its e�orts spent looking at the smallest possible patches—in which a solution
is more likely to be encountered—rather than evaluating increasingly large patches
over time. In doing so, we �nd ourselves closer to the driving motivation behind
search-based program repair: patches are only a short distance away from the buggy
program. At the same time, to allow the technique to scale to multiple-edit patches
and to speed up convergence, our algorithm exploits promising combinations of
edits as soon as they are encountered, as explained next.

To achieve these behaviours, our algorithm divides into search space into two parts:
an exploration space and an exploitation space. The former is composed, initially,
of the set of all possible single-edit modi�cations to indicted statements within the
program. As the search progresses, edits are sampled without replacement from
this space, in an e�ort to discover partial solutions. Over time, this space continues
to shrink, monotonically, until no edits remain. The exploitation space contains
the set of all partial solutions discovered over the course of the search. When a
partial repair is discovered, it is added to this space. The algorithm then determines
whether any other partial repairs may be combined with this newly added partial,
and if so, pushes their concatenations to the exploitation stack. Whilst this stack is
non-empty, the algorithm evaluates each of its combinations of partial solutions. If
the combination passes all of the negative test cases passed by each of its parts, the
combination is added to the exploitation space. If not, this is treated as a sign that at
least one of the two partial solutions involved in the combination is incorrect, and
so their combination is discarded. This process continues until either an acceptable
solution is found, a resource limit is reached, or both the exploration space and
exploitation stack are empty.

4GenProg, and to some degree, MintHint, are the only two repair techniques to allow multiple
edits to a single program location. From observation of GenProg’s patches, we �nd no cases where
this ability is used in an acceptable, minimised repair.

182

6.4. GREEDY ALGORITHM

Algorithm 6: Greedy Search Program Repair
explore← GenerateExplorationSpace() ;
exploit ← ∅ ;
combinations← [] ;
while resources not exhausted do

/* perform exploitation when possible */

if combinations 6= [] then
xy← Pop(combinations) ;
x, y← combo ;
/* xy should pass all tests passed by x and y */

Evaluate(xy, TN) ;
foreach t : PassedTests(x) ∪ PassedTests(y) do

if not PassesTest(xy, t) then

break

end

end

/* xy should pass all positive tests */

if not PassesAll(xy, TP) then
break

else if PassesAll(xy, TN) then
return xy

else

ReportPartialSolution(xy, exploit, combinations) ;
end

/* check if exploration space is empty */

else if explore = ∅ then
return ⊥

/* explore single-edit space */

else

cand = Sample(explore) ;
if PassesAny(cand, TN) and PassesAll(cand, TP) then

if PassesAll(cand, TN) then
return cand

end

ReportPartialSolution(cand, exploit, combinations)
end

end

end

183

SEARCH

Pseudocode for our greedy algorithm is given in Algorithm 6. As an initialisation
step, the GenerateExplorationSpace populates a memory- and look-up-e�cient
data structure with the set of all possible single edit patches to the program, at loca-
tions implicated by the fault localisation. The main loop of the algorithm continues
to iterate until a solution is found, a resource limit is hit, or the search space has
been exhausted.

At each iteration, the algorithm checks to see whether there is a promising combina-
tion of edits waiting to be evaluated. If so, the algorithm evaluates the combination
on the (covering) negative tests. The combination xy is saved to the exploit space,
using ReportPartialSolution!, provided it passes all of the tests that are passed
by each of its parts, x and y. For example, if x passes {N1}, and y passes {N2}, xy
should pass {N1, N2}, as well as all of the positive tests. As an optimisation, the
combination is only evaluated against the positive tests if it satis�es this invariant
over the negative test cases. A further optimisation, left for future work, would be
to evaluate the union of the negative tests passed by x and y, using prioritisation
and terminating on the �rst instance of failure.

In cases where the combinations stack is empty, the algorithm proceeds to sample an
edit from its explore space via the Sample! function. This process of sampling �rst
selects a subject statement from the program, according to its fault localisation. For
the sake of allowing a fair comparison to GenProg’s existing search algorithm, we
used GenProg’s default 10:1 fault localisation. Once a statement has been selected,
the algorithm proceeds to choose the type of edit at random. In accordance with
GenProg’s default mutation operator probabilities, we give each operator an equal
probability of selection. Finally, the algorithm samples an edit of the chosen type at
the selected location at random without replacement (i.e., the edit is removed from
the exploration space). Upon sampling an edit, the algorithm updates the state of
its explore space, removing the chosen statement from consideration by the fault
localisation if no edits remain at that statement.

Once an edit has been sampled, the algorithm evaluates that edit on all of its cover-
ing negative tests, in parallel. If the edit fails all of the negative tests, it is discarded.
If, and only if, the edit passes at least one negative test, is it evaluated against the
covering positive tests. To increase the e�ciency of the search, the set of covering
positive tests are ordered by their observed likelihood of failure, prior to evaluation;
this minimises the expected number of test evaluations required to reject an edit.
Once sorted, tests are then evaluated in parallel. If at any point a positive test is
failed, the search ceases to evaluate the rest of the covering positive tests and dis-
cards that edit. In the event that the edit passes all of its covering positive tests and
at least one of its covering negative tests, that edit is recorded as a partial solution
by ReportPartialSolution.

When a partial solution is discovered by the search, ReportPartialSolution tra-
verses its exploit space to �nd promising combinations of edits that include the ed-
its within the reported partial solution. Combinations, each formed of two partial
solutions within the exploit space which satisfy certain criteria, are pushed to the

184

6.4. GREEDY ALGORITHM

Algorithm 7: Greedy Search, Partial Solution Reporting
ReportPartialSolution(x, exploit, combinations) begin

stmtsx ← CoveredStmts(x) ;
passesx ← PassedTests(x) ;
/* Look for promising combinations including this patch */

foreach y : exploit do
/* Find any overlap in edit statements */

stmtsy ← CoveredStmts(y) ;
stmtsxy ← stmtsx ∩ stmtsy ;
/* Look for mutually exclusively test passes */

passesy ← PassedTests(y) ;
passes∆ ← (passesx \ passesy 6= ∅) ∧ (passesy \ passesx 6= ∅)
/* Determine the length of the resulting patch */

length← Length(x) + Length(y) ;
if (stmtsxy = ∅) ∧ passes∆ ∧ (length ≤ lengthmax) then

xy ← Combine(x, y) ;
Push(combinations, xy) ;

end

end

Add(exploit, partial) ;
end

combinations stack: This behaviour causes the algorithm to pause its exploration
of the single-edit space and to immediately exploit the combination. Pseudocode
for the ReportPartialSolution procedure can be found in Algorithm 7. A partial
solution x can be combined with partial solution y to form xy, provided that the
following criteria are satis�ed:

1. The set of statements modi�ed by x and y do not overlap.

2. Let Tx and Ty be the set of tests passed by x and y, respectively. Ensure that
the following holds:

(Tx \ Ty 6= ∅) ∧ (Ty \ Tx 6= ∅)

In other words, x must pass at least one test that is not passed5 by y, and y
must pass at least one test that is not passed by x.

3. The length of the resulting combination xy does not exceed the maximum
allowed patch length. For this study, we set this limit to three edits.

5Note, this includes tests that are not covered by a given patch, as well as those that fail.

185

SEARCH

After �nding satisfactory combinations for the reported partial solution, Report-
PartialSolution records the solution to the exploit space.

Evaluation

To determine whether our proposed algorithm outperforms that used by GenProg,
we evaluated each against the bug scenarios used in our empirical study.

From observation, we deemed that the arti�cial candidate evaluation limits imposed
by GenProg were far too low for use in multiple-edit scenarios—the probability of
encountering, let alone combining, all of the partial �xes within this time frame is
highly unlikely. Thus, to account for the low probability of encountering the compo-
nents of a partial repair, and to gain a better understanding of the real performance
of each con�guration, we evaluated each using a time limit, rather than a limit on
the number of unique candidate evaluations. These time limits were set according
to the number of seeded faults in the bug scenario, as outlined below.

• One Fault: 30 minutes.

• Two Fault: 90 minutes.

• Three Fault: 240 minutes.

Given a limited budget and the increased demands of evaluating patches for such
lengths of time, we performed �ve repeat runs for each bug-algorithm. To conduct
this evaluation, we once again made use of the cloud compute nodes, described in
Table 6.2, for a total of over 300 hours of compute time.

From the results of this evaluation, we compared the e�ectiveness and reliability
of each algorithm using the same metrics used in the empirical study. To compare
e�ciency, we measured the cost of �nding an acceptable patch as the total time
spent searching, across all runs, divided by the number of runs wherein a repair
was found. A comparison of e�ectiveness and the bugs �xed by each algorithm is
given in Table 6.8. A summary of the reliability for each technique is provided by
Table 6.9. Details of the e�ciency of each technique are listed in Table 6.10.

Our results show that the greedy algorithm successfully �xes more bugs than the
baseline (14 vs. 8; Table 6.8). The genetic algorithm is able to �nd a solution to
replace-three, whereas the greedy algorithm fails. On closer inspection of the
seeded fault, we see that the canonical patch requires exploration of the neutral edit
space; two of the edits within this patch do not pass any of the negative test cases,
and thus do not appear as partial solutions to the greedy search.

Comparing the reliability of the two techniques, shown in Table 6.9, we �nd that
the greedy algorithm performs at the same level or greater than the genetic algo-
rithm for 20 of the 21 bugs. For 10 of the 14 bugs solved by the greedy algorithm, it
achieves a reliability of 100%. By comparison, the genetic algorithm only achieves
100% reliability for one bug, tcas-one.

186

6.4. GREEDY ALGORITHM

Bug Scenario Genetic Greedy

replace-one X X
replace-two X
replace-three X
printtokens-one X X
printtokens-two
printtokens-three
printtokens2-one X
printtokens2-two
printtokens2-three X X
schedule-one X
schedule-two X
schedule-three
schedule2-one X X
schedule2-two X
schedule2-three X X
totinfo-one X
totinfo-two X
totinfo-three
tcas-one X X
tcas-two
tcas-three X X

Successful: 8 14

Table 6.8: A comparison of the bugs patched by each technique.

In the seven cases where the e�ciency of the two search algorithms can be com-
pared, the greedy algorithm is between a factor of 1.4 and 57 faster than the ge-
netic algorithm. For tcas-three, the greedy algorithm is roughly a factor of 2.7
slower.

On closer inspection of the results of the greedy algorithm for tcas-three, we ob-
serve an abnormally large number of partial solutions, numbering close to 1000.
Given the opportunistic nature of the greedy algorithm, much of its time is spent
attempting to combine these partial solutions, rather than exploring the single-edit
search space more broadly.

In summary, our greedy algorithm outperforms the genetic algorithm used byGenProg
in terms of e�ectiveness, reliability and e�ciency. Moreover, our approach is sim-
pler and does not require (expensive) parameter tuning.

187

SEARCH

Bug Scenario Genetic Greedy

replace-one 80% 80%
replace-two — 100%
replace-three 20% —
printtokens-one 80% 100%
printtokens-two — —
printtokens-three — —
printtokens2-one — 40%
printtokens2-two — —
printtokens2-three 40% 100%
schedule-one — 100%
schedule-two — 100%
schedule-three — —
schedule2-one 40% 100%
schedule2-two — 80.00%
schedule2-three 60% 100%
totinfo-one — 100%
totinfo-two — 100%
totinfo-three — —
tcas-one 100% 100%
tcas-two — —
tcas-three 40% 20%

Table 6.9: A comparison of the reliability achieved by the genetic and greedy search
algorithms, measured by the fraction of runs wherein an acceptable repair was
found. An “—” is used to denote bug-con�gurations where no repair was found
across any of the runs.

6.5. Future Work

Although our proposed greedy search algorithm outperforms the baseline algorithm
used by GenProg, there are a number of modi�cations that we plan to make to
improve it further still.

A number of existing, complementary techniques, described below, could be applied
to the algorithm with relative ease to increase its e�ciency and reliability. For the
purpose of this study, we omitted these improvements in order to focus our atten-
tion on the relative performance of our greedy algorithm over GenProg’s baseline
genetic algorithm.

• A more e�ective fault localisation approach could be used, allowing the ex-
ploration space to be pruned and focused.

• A probabilistic model could be used to assign di�erent probabilities to indi-

188

6.5. FUTURE WORK

Bug Scenario Genetic Greedy Reduction

replace-one 712.14 528.20 1.35
replace-two — 438.33 —
replace-three 57,875.16 — —
printtokens-one 495.01 8.69 56.95
printtokens-two — — —
printtokens-three — — —
printtokens2-one — 3,919.53 —
printtokens2-two — — —
printtokens2-three 21,700.96 974.10 22.28
schedule-one — 886.24 —
schedule-two — 2,399.63 —
schedule-three — — —
schedule2-one 2,959.97 328.98 9.00
schedule2-two — 4,637.24 —
schedule2-three 9,697.29 2,117.91 4.58
totinfo-one — 167.02 —
totinfo-two — 773.71 —
totinfo-three — — —
tcas-one 23.01 7.37 3.12
tcas-two — — —
tcas-three 21,651.88 59,104.75 0.37

Table 6.10: A comparison of e�ciency between the genetic search and greedy search
algorithms, measured by the total wall-clock time across all runs, in seconds, di-
vided by the number of successful runs. Reduction describes the reduction factor
achieved by the greedy algorithm, compared to the genetic algorithm.

vidual edits within the repair space, in a similar fashion to Prophet [Long
and Rinard, 2016]. Edits that are deemed more likely to occur could be given
priority over less likely edits. One could also use the model to create a deter-
ministic ordering of exploration space, as a pre-processing step. By doing so,
the algorithm would become deterministic, allowing it to be evaluated with-
out the need for repeated runs.

• Anti-patterns, proposed by Tan et al. [2016], could be incorporated into the
exploration space, allowing edits associated with low-quality patches to be
pruned.

Further e�ciency and reliability improvements may be achieved through modi�ca-
tions to the algorithm itself:

• Instead of combining and exploiting complementary partial solutions at the
earliest moment, the algorithm could defer this process until a combination,
whose constituent edits pass all of the negative tests, amongst them. A for-

189

SEARCH

mal expression of this criterion is given in Equation 6.2, where C denotes a
potential combination of edits e ∈ C , and Passes(e, t) is used to assert that
the singleton patch for e passes a given test t.

∀t ∈ TN : ∃e ∈ C : Passes(e, t) (6.2)

This behaviour would dramatically improve the e�ciency of the search in
cases where large numbers of partial but misleading solutions are reported,
such as the tcas bugs.

• In the current version of the algorithm, patches are �rst evaluated against
the negative test suite to check that they pass at least one negative, or all of
the negatives passed by their constituent parts, before being subjected to the
positive tests. To reduce the number of test evaluations, let us assume that
number of patches which pass at least one negative test case is low, and that
patches which pass negative tests are unlikely to fail their covering positive
tests. We can exploit these assumptions by deferring evaluation of the positive
test cases until a patch is found which passes all of the negative tests. In
practice, the positive tests vastly outnumber the negative tests, and so the
gains from such an optimisation could be signi�cant.

For the majority of programs that we have encountered, synthetic and or-
ganic, these assumptions are true; patches which pass any of the negative tests
are relatively rare. In a small number of cases, however, such patches are fre-
quently encountered. To handle this, a smart repair technique could measure
the observed frequency of such patches against an expected frequency, and if
the expected frequency is exceeded, a di�erent set of optimisations could be
used instead.

To allow the algorithm to solve a greater number of bugs—albeit it at some cost
to e�ciency—the algorithm could be tuned to exploit neutral edits, in addition to
partial solutions. One way of exploiting neutral edits could be used with the opti-
misations described above. After exhausting the exploration space and �nding an
acceptable solution, a neutral space could be created. The set of neutral edits could
then be found and saved to this space, using test prioritisation to reduce the expected
cost of doing so. Once the neutral space is created, the algorithm could exhaustively
combine pairs of neutral edits, in the search for partial solutions. Partial solutions
discovered during this phase would be recorded to the exploitation space, as usual,
and combined with complementary partial solutions.

In addition to the above optimisations, we plan to explore whether the inclusion
of certain heuristics can be used to prune the search space. Speci�cally, we are
interested in answering the following question: “Given two unique patches, A and
B, with known test suite outcomes, does the knowledge of the test suite outcome
for their combinationAB provide us with (usable) information about the solution?”
To answer this question, we intend to explore whether certain test suite outcomes
forAB can be used to identify parts of the solution and to prune certain edits.

190

6.6. CONCLUSION

6.6. Conclusion

In this chapter, we conducted an theoretical and empirical analysis of the search
algorithm used by GenProg, one of few repair techniques (theoretically) capable
of performing multiple-edit repair. We identi�ed a number of fundamental weak-
nesses within GenProg’s algorithm, stemming from its generational, population-
based nature; �xing any one of these issues causes another to be exacerbated. We
also explored the role of �tness information within the search and found that the
search was more e�cient, e�ective and reliable when selection was restricted to
solutions which pass all of their covering positive tests. Modifying this selection
between non-destructive patches to favour patches that pass previously failing tests
was found to produce further performance gains.

Motivated by these results, we proposed and evaluated an alternative search algo-
rithm, based on a greedy search. Across a benchmark of 21 bug scenarios of varying
size, we found that our algorithm beat GenProg’s in terms of every performance
metric we measured. Although our aggressive restriction of the search space pro-
duced a better performance overall, the greedy search was unable to patch one of
the scenarios repaired by GenProg. Additionally, the high frequency of negative
test passes on another bug scenario caused the e�ciency of our algorithm to drop
below that of GenProg. We outlined a number of improvements that we intend to
make to the algorithm in the future, which may alleviate these issues and increase
its performance further.

In summary, through theory and observation, we showed that GenProg’s search
algorithm has de�ciencies. Existing approaches, such as RSRepair, AE and SPR are
signi�cantly more e�cient due to aggressive optimisations, but all are limited to
single-edit patches. We proposed a novel search algorithm for performing multiple-
edit repair, which demonstrates promising results. In the future, we plan to optimise
this algorithm further and to evaluate it against a dataset of real-world bugs in large-
scale programs.

191

SEARCH

192

CHAPTER 7

Conclusion

In this section, we present a summary of our �ndings, in terms of the research ques-
tions presented in Chapter 1, and brie�y outline directions for future research. Fi-
nally, we provide a set of concluding remarks.

7.1. Summary

RQ1: Can the results of candidate patch evaluations, gathered over the

course of the search, be used to improve the accuracy of the fault local-

isation, online?

Inspired by recent results in applying mutation analysis to the problem of fault lo-
calisation, in Chapter 4 we explored whether the test outcomes of candidate patches
could be used to identify promising �x locations, online. To answer this question, we
conducted a 12-hour random walk of 28 di�erent bugs, 15 of which were arti�cial,
and the remaining 12 organic. Our results demonstrate a statistically-signi�cant
di�erence (with a medium-sized e�ect) in the between the passing-to-failing dis-
tributions of statements that were changed by the developer, and those that were
not.

No signi�cant di�erence was found between the failing-to-passing distributions of
human-modi�ed and non-modi�ed statements, suggesting that this failing-to-passing
information has little to no use in detecting potential �x locations. We proposed
and evaluated a number of online fault localisation measures based on our �ndings,
but found that none of them was able to consistently outperform the use of o�ine
localisation; MUSE and Metallaxis were also unable to outperform o�ine localisa-
tion.

There may be a number of reasons for the lack of a signi�cant improvement in the
accuracy of the fault localisation:

• Our evaluation naively combined the results of the mutation analysis by sim-
ply computing their product. Determining a meaningful way of combining
multiple sources of fault localisation appears to be a non-trivial problem. The
use of machine learning techniques may be required to discover e�ective ways
of combining information.

193

CONCLUSION

• We observe a search landscape in which most repairs either had no impact
on the outcomes of the test suite, or they failed all of their passing tests. The
lack of diversity in test suite outcomes hinder the e�ectiveness of the analysis
and increase the di�culty of discriminating between �xable and non-�xable
program locations. The shape of this landscape may be a result of GenProg’s
coarsely-grained statement level operators.

Alternatively, it may be that real-world test suites for C programs tend to ex-
hibit a largely all-or-nothing behaviour. Upon inspection of Python’s tests,
for instance, we observe that each test case in fact corresponds to a whole
suite of atomic tests for one particular module. The results of mutation anal-
ysis may be improved through the use of test case atomisation—a technique
which cannot be applied to C programs, due to the lack of a ubiquitous test-
ing framework. It may also be that mutation analysis performs better when
combined with purpose-built, automatically generated test suites.

• To be e�ective, mutation analysis may require a large number of mutants per
program location. Due to the substantial overheads associated with compi-
lation, we were able to generate relatively few mutants within our 12-hour
window. Previous mutation analysis results involve the generation of tens of
thousands of mutants—a feat that would require days, if not weeks of compute
time to realise in large-scale, real-world programs.

RQ2: Is plastic surgery equally e�ective for all repair actions?

In Chapter 5, we mined thousands of real-world bug �xes from hundreds of the most
popular open-source projects on GitHub. After extracting instances of 23 repair ac-
tions within these mined �xes, we determined how many of those instances could
be grafted from the �le under repair. We found that repair actions at the block-level
(e.g., Insert Else-If Branch) were amongst the least likely to be grafted, whereas
those operating at �ner levels of granularity (e.g., Modify Assignment) exhibited
the highest levels of graftability. To improve the e�ciency of automated repair, fu-
ture repair tools may exploit this observation by simply omitting (or de-prioritising)
block-level repair actions.

We �nd that the majority of repairs occur below the statement-level—an encourag-
ing result, given that plastic surgery appears to be most e�ective at �ner levels of
granularity. In 58% of cases, the modi�ed version of a statement could be found else-
where in the �le (when abstract code snippets were used). We can use this �nding
to increase the e�ective of future repair tools by focusing statement replacement on
structurally similar statements.

As part of our analysis, we also found that statement deletion was the second most
common repair action, occurring in around a third of bug �xes. This suggests that
preventing explicit statement deletion [Long and Rinard, 2015; Qi et al., 2015] may
be misguided and likely to reduce the number of bugs that can be repaired.

194

7.1. SUMMARY

RQ3: Can the e�ectiveness of plastic surgery be increased through the

use of unlabelled code snippets?

In Chapter 5, we also investigated the e�ectiveness of plastic surgery when variable
labels are stripped from snippets. When plastic surgery is performed with these
abstract code snippets, we �nd that graftability is substantially increased. To increase
the number of repairable bugs, we strongly advocate the inclusion of abstract donor
code snippets into future search-based repair techniques.

In the future, we plan to implement our proposed repair actions and donor code
snippets in a new repair tool. Building on previous work by Long and Rinard [2016]
and Soto et al. [2016], we could feed the patches mined by BugHunter to a ma-
chine learning technique, to produce a model for performing �x localisation (i.e., to
assign probabilities to the likelihood of certain bug �xes, based on those observed
in historical patches).

RQ4: Do biases within GenProg’s operators degrade its performance?

In Chapter 6, we identi�ed a number of potential biases and ine�ciencies inGenProg’s
search algorithm as a part of a larger theoretical analysis. We showed how allowing
multiple edits at a single location may limit the search from reaching certain areas
of the search space, and how patches tend to grow in size over the course of the
search (i.e., bloat occurs).

As part of an empirical study, we examined whether the performance of the search
could be improved by �xing these problems:

• To address the problem of bloat, we replaced GenProg’s standard selection
operator with a double-tournament selection. We found little to no di�erence
in the performance of the search, despite the observation that most patches
are found earlier in the search (when patches are smaller). This result may be
due to the lack of tuned parameters, or it may be that bloat controls further
reduce the memory of the search.

• As a simple �x to the identi�ed operator biases, we assessed the performance
of GenProg when its algorithm is limited to a single edit per location. As
with the use of bloat controls, we found no discernible improvement in per-
formance.

None of our changes to GenProg in response to these biases had a noticeable e�ect
on its performance. The lack of any response to these changes, be it positive or neg-
ative, shows that changes to important components and parameters of GenProg’s
search algorithm have no e�ect. This observation, together with our �ndings re-
garding GenProg’s �tness function, suggests that the search is not operating as
intended.

195

CONCLUSION

RQ5: Does �tness help to guide GenProg’s search algorithm towards

solutions?

As part of our analysis of GenProg’s search algorithm in Chapter 6, we identi�ed
the implicit positive and negative feedback mechanisms provided by �tness infor-
mation: The test outcomes of previously passing tests serve to prevent the degrada-
tion of existing functionality, whereas the outcomes of previously failing tests serve
to promote the exploitation of partial solutions.

Through an empirical analysis, we demonstrated that the search performs at least
as well as the baseline when selection is restricted to non-destructive patches (i.e.,
patches that do not fail previously passing test cases). Therefore, gathering infor-
mation for all of an individual’s previously passing tests is redundant. The search
can operate more e�ciently, as measured by the number of test evaluations, by per-
forming test case prioritisation over the previously passing tests, and terminating
on the �rst instance of failure.

To determine the contribution of negative test outcomes, we introduced a variant of
GenProg wherein selection was restricted to non-destructive individuals, but selec-
tion between those individuals was performed on the basis of the number of negative
test passes. In most cases, we found that this algorithm allowed the search to �nd
a solution in fewer candidate patch evaluations. For scenarios with particularly-
weak test suites, where a large number of negative test passes were observed, this
algorithm led to a reduced performance.

RQ6: Is there amore e�ective search algorithm for generatingmultiple-

edit patches than the genetic algorithm used by GenProg?

Motivated by the results of our analysis of GenProg’s search algorithm, in Chapter
6 we proposed an alternative search algorithm for multiple-edit repair, based on a
greedy algorithm. Our proposed algorithm was shown to beat GenProg’s genetic
algorithm across all of our performance metrics (e�ciency, e�ectiveness, reliability).
These results display promise for the future of multi-edit, search-based program re-
pair. In future work, we plan to explore a number of optimisations to this algorithm,
and to assess its e�ectiveness of a larger set of real-world, multi-line bugs.

7.2. Future Work

In this section, we brie�y discuss two promising areas for future research. A more
detailed discussion on future research regarding repair models, fault localisation and
search algorithms can be found at the end of each of the respective chapters.

• Platform forAutomatedProgramRepair: Part of the reason for GenProg’s
perceived lack of e�ectiveness may not be that its repair model lacks expres-

196

7.2. FUTURE WORK

siveness, as suggested by others [Long and Rinard, 2015]. Rather, its problems
may be the consequence of a number of unintended code transformations per-
formed by CIL—the AST analysis framework upon which GenProg is based—
which may make the program unsuitable for repair. Below, we describe two
examples of this behaviour:

– if-statements with multiple terms (e.g., if (x && y && z)) are exploded
into a sequence of side-e�ect-free, single-term if-statements, shown be-
low.

if (x) {

if (y) {

if (z) {

...

}

}

}

– Statements with possible side e�ects are transformed into a sequence of
side-e�ect-free statements, through the introduction of temporary vari-
ables. For example, the statement:

int z = f(x) + g(z);

is transformed into the following:

int t1 = f(x);

int t2 = g(z);

int z = t1 + t2;

As a result of these transformations, the program in�ates in size. In the case
of the SIR bug scenarios, we observed single statements that were exploded
into more than ten. Since all of these statements belong to the same basic
block, there is no potential improvement to the fault localisation (assuming
spectrum-based fault localisation is used). This linear increase in the number
of statements within the program leads to a quadratic increase in the size of
the search space: An average in�ation factor of 10 could result in a 100-fold
increase in the size of the search space. Accompanying this growth in the
search space is an increase in the size of the solution. Where previously a
patch could be generated with a single edit (e.g., insertion of the statement
from the example above), now a set of statements must be introduced, in an
acceptable order.

In addition to increasing the di�culty of the problem along these two dimen-
sions, in�ation introduces other unintended issues through its use of tem-
porary variables. Crafting a repair now requires that a particular temporary
variable is in scope.

197

CONCLUSION

In ongoing work, we are building a new framework for automated program
repair of C and C++, on top of Clang—a modern program analysis toolchain,
which preserves the original source code of the program. As part of this
framework, we plan to integrate a DSL for formally de�ning repair actions in
terms of program transformations. Additionally, to reduce the considerable
overheads associated with compilation, we plan to introduce super-mutation,
i.e., multiple mutants are compiled once and selected between at run-time.

• Test Suites forAutomated ProgramRepair: During our empirical analysis
of GenProg’s search algorithm, we employed a simple test suite reduction
technique to minimise the original test suites for the Siemens benchmarks by
two orders of magnitude. Despite the large reduction, from thousands to tens
of tests, we observed few cases of over�tting. These anecdotal results would
seem to suggest that any improvements to repair quality stemming from the
use of larger test suites are quickly diminishing as the size of the test suite
increases. In future work, we plan to explore exactly what makes a good test
suite for automated program repair. These qualities may involve mutation
score, coverage, the novelty of execution path, or data-�ow invariants.

Interestingly, we found that many low-quality repairs associated withGenProg
are found in test suites which exhibit a low entropy in across their possible
outcomes. Test harnesses that simply check the exit status of a program, such
as the PHP scenarios within ManyBugs, exhibit the lowest-possible entropies.
From the perspective of the test harness, most test cases appear to have iden-
tical outcomes. By using Pythia to automatically generate an oracle that
checks the standard output, standard error, and resulting state of the sand-
box, the number of identical tends to drop considerably (i.e., this enhanced
test harness exhibits a higher degree of entropy across the behaviours of its
tests). When this enhanced oracle is used, the number of plausible solutions
for the TSE 2012 benchmarks drops from thousands to fewer than ten.

If we can �nd a criterion to express the suitability of a test suite for APR,
then we could use that criterion as an objective function when performing
test-suite reduction. Alternatively, we could use this criterion to guide the
automatic generation of a highly-e�ective, minimal test suite.

• Fault Localisation: In Chapter 4, we found that candidate patches gener-
ated using GenProg’s statement-level operators were ine�ective at localis-
ing the fault when used to perform mutation-based fault localisation (MBFL).
Upon closer investigation, we found that the majority of the candidate patches
generated using GenProg’s coarsely-grained mutation operators exhibited
an “all-or-nothing” behaviour, where the mutation either caused all covering
tests to fail, or it had no e�ect on their outcomes at all. Given the previous suc-
cesses of using MBFL with traditional mutation testing operators [Moon et al.,
2014a; Papadakis and Le Traon, 2015], which typically operate at the level of
expressions, rather than statements, it may be that mutation-based fault local-
isation is only e�ective when used with mutants generated by �nely-grained

198

7.2. FUTURE WORK

operators.

Motivated by the lack of e�ectiveness of GenProg’s statement-level oper-
ators, we plan to investigate the e�ectiveness of a wide range of mutation
operators at varying levels of coarseness. We also plan to explore whether
the test suite behaviours of particular kinds of mutants can be used to pre-
dict the shape of underlying faults. For instance, if mutation of a particular
if-condition appears to have no e�ect on the outcomes of the test suite, it may
suggest a faulty if-condition. By probing the shape of the fault, the search
space can be vastly reduced to the small sub-set of repairs that �t a believed
shape. As well as exploring the behaviour of MBFL using di�erent mutation
operators, we intend to assess whether ensemble learning techniques may be
used to better aggregate mutant information and o�ine, spectrum-based fault
localisation information.

• Repair Model: In Chapter 5, we investigated and demonstrated the e�ec-
tiveness of plastic surgery in the context of actual repair operators. Since we
found that levels of graftability (i.e., the likelihood of discovering a suitable
code snippet within the corpus) varied highly between di�erent repair op-
erators, a natural next step would be to explore whether other factors a�ect
graftability. For instance, we may wish to determine whether missing print
statements and strings are likely to be discovered within the code. By better
understanding the strengths and limitations of plastic surgery, we can design
repair tools that are better able to repair the subset of faults that are most
amenable to plastic surgery; unlikely repairs could be pruned from the search
entirely.

Using the tool we developed to conduct the analysis in Chapter 5, BugHunter,
we could build upon work by Soto et al. [2016] by devising techniques for graft
localisation (i.e., determining the likelihood that certain snippets form part of
the repair). Soto et al. [2016] look at the kind of statement that is most likely to
replace a statement of a given kind. Their work could be extended by looking
at likely insertions, as well as by examining a richer set of features, beyond
just the kind of the statement. A richer set of features, closer to those used in
[Long and Rinard, 2016], could look at the variables used by the snippet (and
the extent to which they overlap with, or complement, the original statement).
Machine learning techniques could be applied to that set of features to learn
an e�ective graft localisation function.

The results of our analysis could also be bolstered by the development and
subsequent use of more sophisticated bug-�x identi�cation procedures. One
might also attempt to automatically categorise bugs, and to use that informa-
tion to determine whether certain kinds of bugs are more amenable to repair,
and to improve graft localisation by �nding snippets that are most likely to
be used to repair faults of that kind.

For more details on future work related to the work conducted in Chapter 5,
see Section 5.7.1.

199

CONCLUSION

• Search: In Chapter 6, we showed that a form of greedy search outperforms is
better suited to automated repair than the genetic algorithm used byGenProg.
Although our greedy search algorithm was substantially more e�cient than
the genetic algorithm approach, its performance could be further improved by
a number of small optimisations. Instead of combining and exploiting com-
plementary partial solutions at the earliest possible moment, an optimised
version of the algorithm could wait until a combination of partial solutions,
whose constituent edits pass of all of the negative tests, is found. By waiting
until a (potential) complete solution is found, the search should show a vastly
improved performance for deceptive problems, where many partial solutions
are incorrectly reported (such as the tcas bugs). Further gains in e�ciency
could be made by deferring the evaluation of evaluation of the positive tests
until a combination of edits that pass all of the negative tests is found.

Rather than pursuing improvements in e�ciency, one may adapt our algo-
rithm to be less greedy to allow a greater number of bugs to be �xed. Instead
of solely combining and exploiting partial solutions, the search could also
combine neutral edits.

In addition to improvements to e�ciency and e�ectiveness, we plan to explore
whether knowledge of the test suite outcomes for combinations of patches can
be used to probabilistically determine whether the individual edits within that
patch are parts of the solution or if they are misleading. More speci�cally, we
seek to answer: “Given two unique patches, A and B, with known test suite
outcomes, does the knowledge of the test suite outcome for their combination
AB provide us with (usable) information about the solution?”

Technical details on potential optimisations to our search algorithm can be
found in Section 6.5.

7.3. Concluding Remarks

Realising the long-held goal of automatically repairing programs poses enormous
challenges, far exceeding those that early results would seem to suggest. Despite the
daunting vastness of the problem, in less than a decade, researchers have demon-
strated techniques capable of �xing a small, but considerable sub-set of single-edit
bugs in real-world, large-scale code. Over the next decade, researchers face an even
greater set of challenges, as we attempt to scale techniques to a larger number of
bugs, spanning multiple lines, all whilst remaining cost e�cient.

The sheer magnitude of the challenges ahead may—understandably—cause some to
doubt that program repair will ever become an integral part of real-world software
development processes. To those that doubt, recall that a decade prior to the in-
troduction of GenProg, the concept of automated program repair would have been

200

7.3. CONCLUDING REMARKS

deemed purely science �ction. Since then, the question has shifted from “is auto-
mated program repair possible?” to “which bugs can we automatically repair?”

In this thesis, we explored each of the challenges facing search-based program re-
pair over the coming decade, and in the process discovered hints of what a next
generation repair technique might look like: We devised a more e�ective algorithm
for multiple-edit repairs, found ways of exploiting plastic surgery to �x a greater
number of bugs, and presented a more robust platform for conducting program re-
pair research. Not all of our results were positive: Contrary to our expectations, and
�ndings of previous research, we found that the use of mutation-based fault locali-
sation had no impact on fault localisation accuracy. In such a early �eld of research,
seemingly promising ideas are likely to fail—a small price to pay, for the privilege of
pioneering. These results help us to understand where best to focus our attention—
or rather, where not to waste it—and raises interesting questions regarding the cases
in which mutation analysis can be used to improve fault localisation.

An exciting decade of research lies ahead—we’ll see you on the other side.

201

CONCLUSION

202

Appendices

203

APPENDIX A

Reproducibility

A.1. Fault Localisation

Raw data, analysis scripts and a replication package for the results presented in
Chapter 4 can be downloaded at:

https://bitbucket.org/ChrisTimperley/ssbse-2017-data

Source code for the modi�ed version of GenProg used in these experiments (and
those in Chapter 6) can be found at:

https://bitbucket.org/ChrisTimperley/GP3

A.2. Repair Model

A replication package for the results in Chapter 5 can be found at:

https://bitbucket.org/ChrisTimperley/phd-repair-model

Note, raw results for this study are not available online, due to size limitations (the
raw data is several hundred GBs in size).

BugHunter, the tool used to mine bug �xing commits and repair actions from Git
repositories can be downloaded at:

https://github.com/ChrisTimperley/BugHunter

A.3. Search

Raw data, analysis scripts and a replication package for the results in Chapter 6 can
be found at:

https://bitbucket.org/ChrisTimperley/phd-search

205

https://bitbucket.org/ChrisTimperley/ssbse-2017-data
https://bitbucket.org/ChrisTimperley/GP3
https://bitbucket.org/ChrisTimperley/phd-repair-model
https://github.com/ChrisTimperley/BugHunter
https://bitbucket.org/ChrisTimperley/phd-search

REPRODUCIBILITY

206

APPENDIX B

Repair Action Mining

B.1. AST and Edit Script Generation

After identifying the bug �xing commits within a Git repository, BugHunter pro-
ceeds to generate the abstract syntax trees for each of the modi�ed source �les, in
both the faulty and �xed versions of each identi�ed bug �x, using GumTree [Falleri
et al., 2014]. Within each generated AST, each node is assigned a unique integer
identi�er n ≥ 0, given by its post-order position within the tree. Additionally, for
each pair of faulty and �xed versions of a source code �le (F, F ′), a set of AST
node mappings M(F, F ′) and an AST edit script ∆(F, F ′) are generated, using a
modi�ed version of GumTree [Falleri et al., 2014].

The mappingM(F, F ′) is composed of a sequence of ordered pairs, (nf , n
′
f), where

nf speci�es the position of a node in F , and n′f speci�es the the location of the
matching node in F ′. In the case where the node located at nf in F has no matching
node in F ′, then n′f is assigned to ⊥. Similarly, when a node exists in F ′, but no
matching node is found in F , nf is assigned to ⊥.

Each edit script ∆(F, F ′) describes a sequence of low-level operations that may be
applied to the faulty source �le F to transform it into its patched form F ′. Unfor-
tunately, GumTree provides no formal de�nition of its edit script language, and so,
for the purposes of this analysis, we de�ne its operations as follows:

• Delete(X) removes the node located at position X within P .

• Insert(X ′, Y ′, k) describes the insertion of the node located at X ′ in P ′ as
the k-th child of the node located at Y ′ in P ′. Note, that Y ′ is not necessarily
contained in P .

• Update(X , `′) updates the label ` of the node located at X in P , with label `′.

• Move(X , X ′) moves the node located at position X within P to location X ′
in P ′. X ′ is obtained by �nding the corresponding mapping for (X,X ′) ∈
M(F, F ′).

By performing the analysis on the ASTs of each repaired source �le, and their ac-
companying edit scripts, rather than the plain text and diff outputs between each
version of the �le, aesthetic and irrelevant changes to the code, including the modi-
�cation of comments can safely be ignored. More importantly, this treatment allows
each of the described repair actions to be detected using a strict set of formal rules

207

REPAIR ACTION MINING

(based uponM(F, F ′) and ∆(F, F ′)), without the need to resort to unsound, ad-hoc
approaches based on analysing the diff.

In a preliminary version of this analysis, BugHunter’s (heuristic) ability to perform
pre-processing on arbitrary C projects was used to handle pre-processor macros
(e.g., #ifdef, #define), potentially allowing the analysis to deal with a wider range
of bugs. However, pre-processing added a signi�cant overhead to the process of
AST generation (to the extent that certain projects, such as the Linux kernel, were
no longer feasible to analyse), and made little di�erence to the detection of repair
actions. To reduce the cost of the analysis, and to allow a larger, wider body of
programs to be incorporated, this pre-processing stage has been dropped from the
�nal analysis.

Edit Script Post-Processing

To reduce the complexity of the analysis, we perform a number of post-processing
steps on the edit scripts and accompanying node mappings produced byGumTree:

• Node Mapping,M : using the mapping of node numbers in P to P ′, Mnum,
we generate a mapping of nodes from P to P ′ by their pointers. In cases
where a node does not exist in either P or P ′, the unpaired node n is mapped
to ⊥ (i.e., (n,⊥) or (⊥, n)).

• Edit Script Nodes: each node number in the edit script is replaced by a
pointer to its corresponding node.

• Before Statements, S: computes the set of statements in P .

• After Statements, S′: computes the set of statements in P ′.

B.2. Detection Rules

In this section, we provide the rules we devised to detect instances of the repair
actions listed in 5.4.3. Below, we discuss a number of helper functions that we use
to reduce the complexity of these detection rules.

We introduce the function Parent(node) to �nd the parent of a given node within
its AST. If the node has no parent (i.e., it is the root of the AST),⊥ is returned.

To simplify �nding the nearest ancestors to a given node n that belongs to a certain
kind k, we introduce the function NAK:

NAK(n, k) =


⊥ if n = ⊥
node if HasKind(n, k)

NAK(Parent(n), k) otherwise
(B.1)

208

B.2. DETECTION RULES

Note, this function treats its argument as the zeroth ancestor, allowing n to be re-
turned as its result.

We introduce a helper function, NAO, to �nd the nearest ancestor of a given node n′
in P ′ with a matching node in P , and returns that matching ancestral node:

NAO(n′) =

{
NAO(Parent(n′)) if (⊥, n′) ∈Mnode

n if (n, n′) ∈Mnode

(B.2)

We introduce a function, Modi�ed, that accepts an edit and returns the nearest node
of a certain kind k within P to which a given edit e was applied:

Modi�ed(e, k) =



{NAK(n, k)} if e = Delete(n)

{NAK(n, k)} if e = Update(n, `′)

{NAK(NAO(n′), k)} if e = Insert(n′, p′, k){
NAK(n, k),

NAK(NAO(n′), k)

}
if e = Move(n, n′)

(B.3)

Statement-Related Actions

DelStmt(stmt)

∣∣∣∣∣∣∣∣∣∣
stmt ∈ S
parent = Parent(stmt)
(stmt,⊥) ∈Mnode

(parent, parent′) /∈Mnode

parent′ 6= ⊥

∣∣∣∣∣∣∣∣∣∣


To detect statement deletions, we iterate through each of the statements in the orig-
inal AST (i.e, stmt ∈ S) and check that there is no matched node for that statement
within the modi�ed AST (indicating it has been deleted). Redundant statement dele-
tions (i.e., those implied by the deletion of their parent statement) are removed by
ensuring that the parent parent of stmtmaps to a node in the modi�ed AST.

Next, we mine InsertStatement actions, which are used to represent both Prepend-
Statement and AppendStatement actions. As with the detection of statement dele-
tions, redundancy checks are used to ensure that nested actions are modelled using
a single insertion.

InsStmt(stmt, parent)

∣∣∣∣∣∣∣∣∣∣
stmt ∈ S′
parent′ = Parent(stmt)
(⊥, stmt) ∈Mnode

(parent, parent′) ∈Mnode

parent 6= ⊥

∣∣∣∣∣∣∣∣∣∣


209

REPAIR ACTION MINING

To simplify the detection of sub-statement-level changes, an intermediary ModifyS-
tatement is introduced, which describes a series of edits applied to a given statement.
To avoid the parent of a modi�ed statement from triggering the ModifyStatement
action, edits are only associated with their nearest statement in the original form of
the AST.

ModStmt(s, s′, edits)

∣∣∣∣∣∣∣∣∣∣
(s, s′) ∈Mnode

s ∈ S ∧ s′ ∈ S′
edits = {e ∈ E |Modi�ed(e, Stmt) = s}
edits 6= ∅
s 6= s′

∣∣∣∣∣∣∣∣∣∣


If-Statement-Related Actions

Wrap(s, w, g)

∣∣∣∣∣∣
(s, s′) ∈Mnode

w = If(g, s, [])
(⊥, if) ∈M

∣∣∣∣∣∣


Unwrap(s, s′)

∣∣∣∣∣∣
s = If(g, s′, [])
s ∈ SP ∧ s /∈ SP ′
s′ ∈ SP ′

∣∣∣∣∣∣


ReplaceIfCond(s, s′, c, c′)

∣∣∣∣∣∣∣∣
(s, s′) ∈M
s = If(c, then, else)
s′ = If(c′, then, else)
c 6= c′

∣∣∣∣∣∣∣∣


ReplaceThen(s, s′, then, then′)

∣∣∣∣∣∣∣∣∣∣
(s, s′) ∈M
s = If(c, then, else)
s′ = If(c, then′, else)
then 6= then′

then′ 6= []

∣∣∣∣∣∣∣∣∣∣


ReplaceElse(s, s′, els, els′)

∣∣∣∣∣∣∣∣∣∣
(s, s′) ∈M
s = If(c, then, else)
s′ = If(c, then, else′)
else 6= else′

else′ 6= []

∣∣∣∣∣∣∣∣∣∣


RemoveElse(s, s′, els)

∣∣∣∣∣∣∣∣
(s, s′) ∈M
s = If(c, then, els)
s′ = If(c, then, [])
els 6= []

∣∣∣∣∣∣∣∣


210

B.2. DETECTION RULES

InsertElse(s, s′, els)

∣∣∣∣∣∣∣∣
(s, s′) ∈M
s = If(c, then, [])
s′ = If(c, then, els)
els 6= []

∣∣∣∣∣∣∣∣



InsertElseIf(s, s′, elif, c2, then2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(s, s′) ∈M
s = If(c1, then1, [])
s′ = If(c1, then1, els)
elif = If(c2, then2, [])
c2 6= c1

then2 6= []
(⊥, then2) ∈M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣


GuardElse(s, s′, g2)

∣∣∣∣∣∣∣∣
(s, s′) ∈M
s = If(g1, then, els)
s′ = If(g1, then, els

′)
els′ = If(g2, els, [])

∣∣∣∣∣∣∣∣


Switch-Related Actions

RepSwitchExp(s, s′, exp, exp′)

∣∣∣∣∣∣∣∣
(s, s′) ∈M
s = Switch(exp, blk)
s′ = Switch(exp′, blk)
exp 6= exp′

∣∣∣∣∣∣∣∣


Loop-Related Actions

To detect RepLoopGuard repair actions, three intermediate repair actions, corre-
sponding to the di�erent loop types are introduced. RepLoopGuard actions are
then found by computing the union of the sets for these intermediate repair ac-
tions.

RepForGuard(s, s′, g, g′)

∣∣∣∣∣∣∣∣
(s, s′) ∈M
s = For(init, g, incr, blk)
s′ = For(init, g′, incr, blk)
g 6= g′

∣∣∣∣∣∣∣∣


RepWhileGuard(s, s′, g, g′)

∣∣∣∣∣∣∣∣
(s, s′) ∈M
s = While(g, blk)
s′ = While(g′, blk)
g 6= g′

∣∣∣∣∣∣∣∣


211

REPAIR ACTION MINING

RepDoWhileGuard(s, s′, g, g′)

∣∣∣∣∣∣∣∣
(s, s′) ∈M
s = DoWhile(g, blk)
s′ = DoWhile(g′, blk)
g 6= g′

∣∣∣∣∣∣∣∣


ARepLoopGuard = ARepForGuard ∪ARepWhileGuard ∪ARepDoWhileGuard

Like RepLoopGuard, RepLoopBody is composed of the union of three intermediate
repair actions, which are otherwise ignored for the rest of the analysis.

RepForBody(s, s′, b, b′)

∣∣∣∣∣∣∣∣
(s, s′) ∈M
s = For(init, g, incr, b)
s′ = For(init, g, incr, b′)
b 6= b′ ∧ b′ 6= []

∣∣∣∣∣∣∣∣


RepWhileBody(s, s′, b, b′)

∣∣∣∣∣∣∣∣
(s, s′) ∈M
s = While(g, b)
s′ = While(g, b′)
b 6= b′ ∧ b′ 6= []

∣∣∣∣∣∣∣∣


RepDoWhileBody(s, s′, b, b′)

∣∣∣∣∣∣∣∣
(s, s′) ∈M
s = DoWhile(g, b)
s′ = DoWhile(g, b′)
b 6= b′ ∧ b′ 6= []

∣∣∣∣∣∣∣∣


ARepLoopBody = ARepForBody ∪ARepWhileBody ∪ARepDoWhileBody

Assignment-Related Actions

RepRHS(s, s′, rhs, rhs′)

∣∣∣∣∣∣∣∣
(s, s′) ∈M
s = Assign(lhs, op, rhs)
s′ = Assign(lhs, op, rhs′)
rhs 6= rhs′

∣∣∣∣∣∣∣∣


RepLHS(s, s′, lhs, lhs′)

∣∣∣∣∣∣∣∣
(s, s′) ∈M
s = Assign(lhs, op, rhs)
s′ = Assign(lhs′, op, rhs)
lhs 6= lhs′

∣∣∣∣∣∣∣∣


212

B.2. DETECTION RULES

Function-Call-Related Actions

As with other types of repair action, an intermediate action is introduced for all
repair actions related to function calls. This intermediate action, ModCall, is used
to quickly identify that the only modi�cation to a given statement is rooted at a
given function call (or, to be more precise, the function call closest to all edits made
at that statement).


ModCall(s, s′, c, c′, E)

∣∣∣∣∣∣∣∣∣∣∣∣

ModStmt(s, s′, E) ∈ AModStmt

call = Call(t, args)
call′ = Call(t′, args′)
call 6= call′

(call, call′) ∈M
∀e ∈ E | Nearest(e,Call) = call

∣∣∣∣∣∣∣∣∣∣∣∣


RepCallTarg(s, s′, t, t′)

∣∣∣∣∣∣∣∣
ModCall(s, s′, c, c′, E) ∈ AModCall
call = Call(t, args)
call′ = Call(t′, args)
t 6= t′

∣∣∣∣∣∣∣∣


ModCallArgs(args, args′)

∣∣∣∣∣∣∣∣
ModCall(s, s′, c, c′, E) ∈ AModCall
call = Call(t, args)
call′ = Call(t, args′)
args 6= args′

∣∣∣∣∣∣∣∣


RepCallArg(args, arg, arg′)

∣∣∣∣∣∣∣∣
ModCall(args, args′) ∈ AModCallArgs
args = l ⊕ arg ⊕ r
args′ = l ⊕ arg′ ⊕ r
arg 6= arg′

∣∣∣∣∣∣∣∣


InsertCallArg(args, arg′)

∣∣∣∣∣∣
ModCall(args, args′) ∈ AModCallArgs
args = l ⊕ r
args′ = l ⊕ arg′ ⊕ r

∣∣∣∣∣∣


RemoveCallArg(args, arg)

∣∣∣∣∣∣
ModCall(args, args′) ∈ AModCallArgs
args = l ⊕ arg ⊕ r
args′ = l ⊕ r

∣∣∣∣∣∣


213

REPAIR ACTION MINING

214

APPENDIX C

Additional Fault Localisation
Results

In Table C.1, we report additional results from our comparison of the e�ectiveness
of various fault localisation approaches in Section 4.3.1.

215

ADDITIONAL FAULT LOCALISATION RESULTS

S
c
e
n
a
r
i
o

G
e
n
P
r
o
g

A
d
j
.
C
o
v
.

P
2
F

P
2
F
-
C
o
v

M
e
t
a
l
l
a
x
i
s

M
U
S
E

J
a
c
c
a
r
d

O
c
h
i
a
i

T
a
r
a
n
t
u
l
a

ct
-o

pe
ns

sl-
0a

2d
cb

6
1.2

27
0.1

42
0.9

07
0.0

46
0.5

33
1.3

79
1.8

19
1.6

55
1.4

43
ct

-o
pe

ns
sl-

69
79

58
3

37
.68

1
75

.25
6

15
.95

8
79

.75
3

8.4
64

8.3
33

25
.00

0
14

.41
8

8.5
88

ct
-o

pe
ns

sl-
8e

38
54

a
0.7

14
0.1

06
1.0

05
0.1

00
0.7

30
0.9

48
0.6

09
0.8

01
0.9

34
ct

-o
pe

ns
sl-

ed
de

f3
0

66
.66

7
76

.03
6

45
.92

0
77

.58
3

41
.66

7
41

.66
7

54
.54

5
47

.80
4

41
.96

8
sir

-g
zi

p-
v1

-K
P_

1
6.6

31
4.4

55
4.6

73
6.4

85
2.5

98
2.4

39
4.6

26
3.8

13
3.2

65
sir

-g
zi

p-
v1

-T
W

_3
9.2

02
14

.21
1

4.6
89

15
.32

4
2.0

97
1.9

35
6.6

01
4.3

80
2.9

25
sir

-g
zi

p-
v4

-K
L_

1
2.6

85
2.7

27
1.7

24
3.0

83
0.9

89
0.9

35
3.0

28
2.3

67
1.2

32
sir

-g
zi

p-
v5

-K
L_

1
0.4

00
0.3

26
0.3

60
0.3

94
0.2

68
0.2

64
0.3

37
0.3

17
0.2

92
sir

-g
zi

p-
v5

-K
L_

8
2.1

69
6.5

85
0.3

38
4.6

72
0.8

87
0.2

96
4.0

80
1.5

68
0.4

83
sir

-s
ed

-v
2-

AG
_1

7
0.1

85
0.0

19
0.2

11
0.0

23
0.5

30
0.1

86
0.1

49
0.2

23
0.2

26
sir

-s
ed

-v
3-

AG
_1

1
0.5

73
6.9

53
0.6

06
3.0

86
0.8

10
0.5

73
1.9

23
1.1

28
0.9

10

Ta
bl

e
C.

1:
Th

e
e�

ec
tiv

en
es

so
fv

ar
io

us
fa

ul
tl

oc
al

isa
tio

n
sc

he
m

es
,m

ea
su

re
d

by
th

e
pr

ob
ab

ili
ty

of
sa

m
pl

in
g

a
�x

ab
le

st
at

em
en

t.

216

Bibliography

Abreu, R., Zoeteweij, P., and van Gemund, A. J. C. (2007). On the Accuracy of
Spectrum-based Fault Localization. In Testing: Academic and Industrial Confer-

ence Practice and Research Techniques - MUTATION, TAICPART-MUTATION ’07,
pages 89–98.

Ackling, T., Alexander, B., and Grunert, I. (2011). Evolving Patches for Software
Repair. InConference onGenetic and Evolutionary Computation, GECCO ’11, pages
1427–1434.

Agrawal, H., Horgan, J. R., Krauser, E. W., and London, S. (1993). Incremental Regres-
sion Testing. In Conference on Software Maintenance, ICSM ’93, pages 348–357.

Al-Ekram, R., Adma, A., and Baysal, O. (2005). di�X: An Algorithm to Detect
Changes in Multi-version XML Documents. In Conference of the Centre for Ad-

vanced Studies on Collaborative Research, CASCON ’05, pages 1–11.

Arcuri, A. and Yao, X. (2008). A Novel Co-evolutionary Approach to Automatic
Software Bug Fixing. In Congress on Evolutionary Computation, CEC ’08, pages
162–168.

Avizienis, A. (1985). The N-Version Approach to Fault-Tolerant Software. IEEE

Transactions on Software Engineering, 11(12):1491–1501.

B. Le, T.-D., Lo, D., Le Goues, C., and Grunske, L. (2016). A Learning-to-rank Based
Fault Localization Approach Using Likely Invariants. In International Symposium

on Software Testing and Analysis, ISSTA ’16, pages 177–188.

Barr, E. T., Brun, Y., Devanbu, P., Harman, M., and Sarro, F. (2014). The Plastic
Surgery Hypothesis. In International Symposium on Foundations of Software En-

gineering, FSE ’14, pages 306–317.

Black, P. E. (2007). Software assurance with SAMATE reference dataset, tool stan-
dards, and studies. In Digital Avionics Systems Conference, DASC ’07, pages 6.C.1–
1–6.C.1–6.

Bloch, J. (2008). E�ective Java. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd
edition.

Böhme, M. and Roychoudhury, A. (2014). CoREBench: Studying Complexity of
Regression Errors. In International Symposium on Software Testing and Analysis,
ISSTA ’14, pages 105–115.

Cadar, C., Dunbar, D., and Engler, D. (2008). KLEE: Unassisted and Automatic Gen-
eration of High-coverage Tests for Complex Systems Programs. In Conference on

Operating Systems Design and Implementation, OSDI ’08, pages 209–224.

217

BIBLIOGRAPHY

Carbin, M., Misailovic, S., Kling, M., and Rinard, M. C. (2011). Detecting and Escap-
ing In�nite Loops with Jolt. In European Conference on Object-oriented Program-

ming, ECOOP ’11, pages 609–633.

Chandra, S., Torlak, E., Barman, S., and Bodik, R. (2011). Angelic Debugging. In
International Conference on Software Engineering, ICSE ’11, pages 121–130.

Chen, T. Y. and Cheung, Y. Y. (1997). On Program Dicing. Journal of Software Main-

tenance: Research and Practice, 9(1):33–46.

Coker, Z. and Ha�z, M. (2013). Program Transformations to Fix C Integers. In
International Conference on Software Engineering, ICSE ’13, pages 792–801.

Coldewey, D. (2008). Zune bug explained in detail. https://techcrunch.com/

2008/12/31/zune-bug-explained-in-detail/. Accessed May, 2017.

de Moura, L. and Bjørner, N. (2008). Z3: An E�cient SMT Solver, pages 337–340.
ETAPS ’08.

Demsky, B. and Rinard, M. (2003). Automatic Detection and Repair of Errors in Data
Structures. In Conference on Object-oriented Programing, Systems, Languages, and

Applications, OOPSLA ’03, pages 78–95.

Demsky, B. and Rinard, M. (2005). Data Structure Repair using Goal-Directed Rea-
soning. In International Conference on Software Engineering, ICSE ’05, pages 176–
185.

Do, H., Elbaum, S., and Rothermel, G. (2005). Supporting Controlled Experimenta-
tion with Testing Techniques: An Infrastructure and its Potential Impact. Empir-

ical Software Engineering, 10(4):405–435.

Downey, A. B. (2011). Think Stats: Probability and Statistics for Programmers.
O’Reilly Media, 2nd edition.

Dyer, R., Nguyen, H. A., Rajan, H., and Nguyen, T. N. (2013). Boa: A Language and
Infrastructure for Analyzing Ultra-large-scale Software Repositories. In Interna-

tional Conference on Software Engineering, ICSE ’13, pages 422–431.

Eiben, A. E. and Smith, J. E. (2015). Introduction to Evolutionary Computing. Springer
Publishing Company, Incorporated, 2nd edition.

Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S., Pacheco, C., Tschantz, M. S., and
Xiao, C. (2007). The Daikon System for Dynamic Detection of Likely Invariants.
Science of Computer Programming, 69(1-3):35–45.

Falleri, J., Morandat, F., Blanc, X., Martinez, M., and Monperrus, M. (2014). Fine-
grained and accurate source code di�erencing. In International Conference on

Automated Software Engineering, ASE ’14, pages 313–324.

218

https://techcrunch.com/2008/12/31/zune-bug-explained-in-detail/
https://techcrunch.com/2008/12/31/zune-bug-explained-in-detail/

BIBLIOGRAPHY

Fast, E., Le Goues, C., Forrest, S., and Weimer, W. (2010). Designing Better Fitness
Functions for Automated Program Repair. In Annual Conference on Genetic and

Evolutionary Computation, GECCO ’10, pages 965–972.

Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. (2015). An updated performance
comparison of virtual machines and Linux containers. In International Symposium

on Performance Analysis of Systems and Software, ISPASS ’15, pages 171–172.

Fry, Z. P., Landau, B., and Weimer, W. (2012). A Human Study of Patch Maintain-
ability. In International Symposium on Software Testing and Analysis, ISSTA ’12,
pages 177–187.

Gall, H. C., Fluri, B., and Pinzger, M. (2009). Change Analysis with Evolizer and
ChangeDistiller. IEEE Software, 26(1):26–33.

Gallagher, K., Binkley, D., and Harman, M. (2006). Stop-List slicing. In International

Workshop on Source Code Analysis and Manipulation, SCAM ’06, pages 11–20.

Gao, Q., Xiong, Y., Mi, Y., Zhang, L., Yang, W., Zhou, Z., Xie, B., and Mei, H. (2015).
Safe Memory-Leak Fixing for C Programs. In International Conference on Software

Engineering, volume 1 of ICSE ’15, pages 459–470.

Gi�horn, D. and Hammer, C. (2007). An Evaluation of Slicing Algorithms for Con-
current Programs. In International Working Conference on Source Code Analysis

and Manipulation, SCAM ’07, pages 17–26.

Glover, F. (1986). Future Paths for Integer Programming and Links to Arti�cial In-
telligence. Computers and Operations Research, 13(5):533–549.

Gupta, R. and So�a, M. L. (1995). Hybrid Slicing: An Approach for Re�ning Static
Slices Using Dynamic Information. SIGSOFT Software Engineering Notes, 20(4):29–
40.

Harman, M. and Hierons, R. M. (2001). An Overview of Program Slicing. Software
Focus, 2(3):85–92.

Harrold, M. J., Rothermel, G., Sayre, K., Wu, R., and Yiz, L. (2000). An Empiri-
cal Investigation of the Relationship Between Spectra Di�erences and Regression
Faults. Journal of Software Testing, Veri�cation, and Reliability, 10(3).

Holland, J. H. (1992). Adaptation in Natural and Arti�cial Systems: An Introductory

Analysis with Applications to Biology, Control and Arti�cial Intelligence. MIT Press,
Cambridge, MA, USA.

Holland, J. H. (2000). Building Blocks, Cohort Genetic Algorithms, and Hyperplane-
De�ned Functions. Evolutionary Computing, 8(4):373–391.

Horwitz, S., Reps, T., and Binkley, D. (1990). Interprocedural Slicing Using De-
pendence Graphs. ACM Transactions on Programming Languages and Systems,
12(1):26–60.

219

BIBLIOGRAPHY

Hutchins, M., Foster, H., Goradia, T., and Ostrand, T. (1994). Experiments of the
E�ectiveness of Data�ow- and Control�ow-based Test Adequacy Criteria. In In-

ternational Conference on Software Engineering, ICSE ’94, pages 191–200.

Jaccard, P. (1901). Étude comparative de la distribution �orale dans une portion des
Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles, 37:547–
579.

Janssen, T., Abreu, R., and v. Gemund, A. J. C. (2009). Zoltar: A Toolset for Automatic
Fault Localization. In International Conference onAutomated Software Engineering,
ASE ’09, pages 662–664.

Jha, S., Gulwani, S., Seshia, S. A., and Tiwari, A. (2010). Oracle-guided Component-
based Program Synthesis. In International Conference on Software Engineering,
ICSE ’10, pages 215–224.

Joachims, T. (2002). Optimizing Search Engines Using Clickthrough Data. In In-

ternational Conference on Knowledge Discovery and Data Mining, KDD ’02, pages
133–142.

Jones, J. A. and Harrold, M. J. (2005). Empirical Evaluation of the Tarantula Au-
tomatic Fault-localization Technique. In International Conference on Automated

Software Engineering, ASE ’05, pages 273–282.

Jones, J. A., Harrold, M. J., and Stasko, J. (2002). Visualization of Test Information
to Assist Fault Localization. In International Conference on Software Engineering,
ICSE ’02, pages 467–477.

Jones, T. and Forrest, S. (1995). Fitness Distance Correlation As a Measure of Prob-
lem Di�culty for Genetic Algorithms. In International Conference on Genetic Al-

gorithms, ICGA ’95, pages 184–192.

Judge Business School, Cambridge University (2013). Cambridge University Study
States Software Bugs Cost Economy $312 Billion Per Year. http://www.prweb.
com/releases/2013/1/prweb10298185.htm. Accessed April, 2017.

Just, R., Jalali, D., and Ernst, M. D. (2014). Defects4J: A Database of Existing Faults to
Enable Controlled Testing Studies for Java Programs. In International Symposium

on Software Testing and Analysis, ISSTA ’14, pages 437–440.

Kaleeswaran, S., Tulsian, V., Kanade, A., and Orso, A. (2014). MintHint: Automated
Synthesis of Repair Hints. In International Conference on Software Engineering,
ICSE ’14, pages 266–276.

Ke, Y., Stolee, K. T., Le Goues, C., and Brun, Y. (2015). Repairing Programs with
Semantic Code Search. In International Conference on Automated Software Engi-

neering, ASE ’15, pages 295–306.

220

http://www.prweb.com/releases/2013/1/prweb10298185.htm
http://www.prweb.com/releases/2013/1/prweb10298185.htm

BIBLIOGRAPHY

Kim, D., Nam, J., Song, J., and Kim, S. (2013). Automatic Patch Generation Learned
from Human-written Patches. In International Conference on Software Engineer-

ing, ICSE ’13, pages 802–811.

Kling, M., Misailovic, S., Carbin, M., and Rinard, M. (2012). Bolt: On-demand In�-
nite Loop Escape in Unmodi�ed Binaries. In International Conference on Object

Oriented Programming Systems Languages and Applications, OOPSLA ’12, pages
431–450.

Korel, B. and Rilling, J. (1998). Dynamic program slicing methods. Information and

Software Technology, 40(11–12):647–659.

Kossak, F., Mashkoor, A., Geist, V., and Illibauer, C. (2014). Improving the Under-

standability of Formal Speci�cations: An Experience Report, pages 184–199. REFSQ
’14.

Krinke, J. (2003). Barrier slicing and chopping. In International Workshop on Source

Code Analysis and Manipulation, SCAM ’03, pages 81–87.

Krinke, J. (2004). Slicing, Chopping, and Path Conditions with Barriers. Software

Quality Journal, 12(4):339–360.

Landsberg, D., Chockler, H., Kroening, D., and Lewis, M. (2015). Evaluation of Mea-
sures for Statistical Fault Localisation and an Optimising Scheme. In Egyed, A.
and Schaefer, I., editors, International Conference on Fundamental Approaches to

Software Engineering, FASE ’15, pages 115–129.

Langdon, W. B. (2015). Genetically Improved Software, pages 181–220. Springer
International Publishing, Cham.

Langdon, W. B. and Poli, R. (1998). Fitness Causes Bloat, pages 13–22. Springer
London, London.

Le, X.-B. D., Lo, D., and Le Goues, C. (2016). History Driven Program Repair. In In-

ternational Conference on Software Analysis, Evolution, and Reengineering, SANER
’16.

Le Goues, C., Dewey-Vogt, M., Forrest, S., and Weimer, W. (2012a). A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8 each. In
International Conference on Software Engineering, ICSE ’12, pages 3–13.

Le Goues, C., Holtschulte, N., Smith, E. K., Brun, Y., Devanbu, P., Forrest, S., and
Weimer, W. (2015). The ManyBugs and IntroClass Benchmarks for Automated
Repair of C Programs. IEEE Transactions on Software Engineering, 41(12):1236–
1256.

Le Goues, C., Nguyen, T., Forrest, S., and Weimer, W. (2012b). GenProg: A Generic
Method for Automatic Software Repair. IEEE Transactions on Software Engineer-

ing, 38(1):54–72.

221

BIBLIOGRAPHY

Le Goues, C., Weimer, W., and Forrest, S. (2012c). Representations and Operators
for Improving Evolutionary Software Repair. In Conference on Genetic and Evolu-

tionary Computation, GECCO ’12, pages 959–966, New York, NY, USA.

Liblit, B., Naik, M., Zheng, A. X., Aiken, A., and Jordan, M. I. (2005). Scalable Sta-
tistical Bug Isolation. In Conference on Programming Language Design and Imple-

mentation, PLDI ’05, pages 15–26.

Long, F. and Rinard, M. (2015). Staged Program Repair with Condition Synthesis. In
Joint Meeting of the European Software Engineering Conference and the Symposium

on the Foundations of Software Engineering, ESEC/FSE ’15, pages 166–178.

Long, F. and Rinard, M. (2016). Automatic patch generation by learning correct code.
In Symposium on Principles of Programming Languages, POPL ’16, pages 298–312.

Luke, S. and Panait, L. (2002). Fighting Bloat with Nonparametric Parsimony Pres-
sure. In International Conference on Parallel Problem Solving from Nature, PPSN
VII, pages 411–421.

Lyle, J. R. (1987). Automatic program bug location by program slicing. International
Conference on Computers.

Maldonado, J. C., Delamaro, M. E., Fabbri, S. C. P. F., Simão, A. d. S., Sugeta, T., Vin-
cenzi, A. M. R., and Masiero, P. C. (2001). Mutation Testing for the New Century.
chapter Proteum: A Family of Tools to Support Speci�cation and Program Testing
Based on Mutation, pages 113–116. Kluwer Academic Publishers, Norwell, MA,
USA.

Mann, H. B. and Whitney, D. R. (1947). On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. The Annals of Mathematical

Statistics, 18(1):50–60.

Martinez, M. and Monperrus, M. (2013). Mining software repair models for reason-
ing on the search space of automated program �xing. Empirical Software Engi-

neering, 20(1):176–205.

Martinez, M., Weimer, W., and Monperrus, M. (2014). Do the Fix Ingredients Already
Exist? An Empirical Inquiry into the Redundancy Assumptions of Program Repair
Approaches. In International Conference on Software Engineering, ICSE ’14, pages
492–495.

Mechtaev, S., Yi, J., and Roychoudhury, A. (2015). DirectFix: Looking for Simple
Program Repairs. In nternational Conference on Software Engineering, ICSE ’15,
pages 448–458.

Mechtaev, S., Yi, J., and Roychoudhury, A. (2016). Angelix: scalable multiline pro-
gram patch synthesis via symbolic analysis. In International Conference on Soft-

ware Engineering, ICSE ’16, pages 691–701.

222

BIBLIOGRAPHY

Meng, N., Kim, M., and McKinley, K. S. (2013). LASE: Locating and Applying Sys-
tematic Edits by Learning from Examples. In International Conference on Software

Engineering, ICSE ’13, pages 502–511.

Miller, B. P., Fredriksen, L., and So, B. (1990). An Empirical Study of the Reliability
of UNIX Utilities. Communications of the ACM, 33(12):32–44.

Monperrus, M. (2014). A critical review of automatic patch generation learned from
human-written patches: essay on the problem statement and the evaluation of
automatic software repair. In International Conference on Software Engineering,
ICSE ’14, pages 234–242.

Monperrus, M. and Martinez, M. (2012). CVS-Vintage: A Dataset of 14 CVS Reposi-
tories of Java Software. Technical Report hal-00769121, INRIA.

Montana, D. J. (1995). Strongly Typed Genetic Programming. Evol. Comput.,
3(2):199–230.

Moon, S., Kim, Y., Kim, M., and Yoo, S. (2014a). Ask the Mutants: Mutating Faulty
Programs for Fault Localization. In International Conference on Software Testing,

Veri�cation and Validation, ISSTA ’14, pages 153–162.

Moon, S., Kim, Y., Kim, M., and Yoo, S. (2014b). Hybrid-MUSE: Mutating Faulty
Programs for Precise Fault Localization. Technical report, KAIST.

Naish, L., Lee, H. J., and Ramamohanarao, K. (2011). A Model for Spectra-based
Software Diagnosis. ACM Transactions on Software Engineering and Methodology,
20(3):11:1–11:32.

Naish, L., Lee, H. J., and Ramamohanarao, K. (2012). Spectral Debugging: How Much
Better Can We Do? In Australasian Computer Science Conference, ACSC ’12, pages
99–106.

Necula, G. C., McPeak, S., Rahul, S. P., and Weimer, W. (2002). CIL: Intermediate Lan-
guage and Tools for Analysis and Transformation of C Programs. In International

Conference on Compiler Construction, CC ’02, pages 213–228.

Neumann, G., Harman, M., and Poulding, S. (2015). Transformed Vargha-Delaney
E�ect Size. In International Symposium on Search Based Software Engineering,
SSBSE ’15, pages 318–324.

Nguyen, H. D. T., Qi, D., Roychoudhury, A., and Chandra, S. (2013). SemFix: Program
Repair via Semantic Analysis. In International Conference on Software Engineering,
ICSE ’13, pages 772–781.

Ning, J. Q., Engberts, A., and Kozaczynski, W. V. (1994). Automated Support for
Legacy Code Understanding. Communications of the ACM, 37(5):50–57.

Nishimatsu, A., Jihira, M., Kusumoto, S., and Inoue, K. (1999). Call-mark slicing:
an e�cient and economical way of reducing slice. In International Conference on

Software Engineering, ICSE ’99, pages 422–431.

223

BIBLIOGRAPHY

Ochiai, A. (1957). Zoogeographic studies on the soleoid �shes found in Japan and
its neighbouring regions. Nippon Suisan Gakkai Shi, 22(9):526–530.

Oliveira, V. P. L., Souza, E. F. D., Le Goues, C., and Camilo-Junior, C. G. (2016).
Improved Crossover Operators for Genetic Programming for Program Repair. In
Sarro, F. and Deb, K., editors, International Symposium on Search Based Software

Engineering, SSBSE ’16, pages 112–127.

Pan, H. and Spa�ord, E. H. (1992). Heuristics for Automatic Localization of Software
Faults. Technical Report SERC-TR-116-P, Software Engineering Research Center,
Purdue University, West Lafayette, Indiana, USA.

Papadakis, M. and Le Traon, Y. (2015). Metallaxis-FL: mutation-based fault localiza-
tion. Software Testing, Veri�cation, and Reliability, 25(5-7):605–628.

Parnin, C. and Orso, A. (2011). Are Automated Debugging Techniques Actually
Helping Programmers? In International Symposium on Software Testing and Anal-

ysis, ISSTA ’11, pages 199–209.

Perkins, J. H., Kim, S., Larsen, S., Amarasinghe, S., Bachrach, J., Carbin, M., Pacheco,
C., Sherwood, F., Sidiroglou, S., Sullivan, G., Wong, W.-F., Zibin, Y., Ernst, M. D.,
and Rinard, M. (2009). Automatically Patching Errors in Deployed Software. In
Symposium on Operating Systems Principles, SOSP ’09, pages 87–102.

Qi, Y., Mao, X., Lei, Y., Dai, Z., and Wang, C. (2014). The Strength of Random Search
on Automated Program Repair. In International Conference on Software Engineer-

ing, ICSE ’14, pages 254–265.

Qi, Y., Mao, X., Lei, Y., and Wang, C. (2013). Using Automated Program Repair for
Evaluating the E�ectiveness of Fault Localization Techniques. In International

Symposium on Software Testing and Analysis, ISSTA ’13, pages 191–201.

Qi, Z., Long, F., Achour, S., and Rinard, M. (2015). An Analysis of Patch Plausibility
and Correctness for Generate-and-validate Patch Generation Systems. In Inter-

national Symposium on Software Testing and Analysis, ISSTA ’15, pages 24–36.

Renieris, M. and Reiss, S. P. (2003). Fault Localization With Nearest Neighbor
Queries. In International Conference on Automated Software Engineering, ASE ’03,
pages 30–39.

Reps, T., Ball, T., Das, M., and Larus, J. (1997). The Use of Program Pro�ling for Soft-
ware Maintenance with Applications to the Year 2000 Problem. In Joint Meeting of

the European Software Engineering Conference and the Symposium on the Founda-

tions of Software Engineering, ESEC/FSE ’97, pages 432–449, New York, NY, USA.
Springer-Verlag New York, Inc.

Rosin, C. D. and Belew, R. K. (1997). New Methods for Competitive Coevolution.
Evolutionary Computation, 5(1):1–29.

224

BIBLIOGRAPHY

Rothermel, G., Untch, R. H., Chu, C., and Harrold, M. J. (2001). Prioritizing test cases
for regression testing. IEEE Transactions on Software Engineering, 27(10):929–948.

Schulte, E., Fry, Z. P., Fast, E., Weimer, W., and Forrest, S. (2013). Software mutational
robustness. Genetic Programming Evolvable Machines, 15(3):281–312.

Sidiroglou-Douskos, S., Lahtinen, E., Long, F., and Rinard, M. (2015). Automatic
Error Elimination by Horizontal Code Transfer Across Multiple Applications. In
Conference on Programming Language Design and Implementation, PLDI ’15, pages
43–54.

Silva, J. (2012). A Vocabulary of Program Slicing-based Techniques. ACMComputing

Surveys, 44(3):12:1–12:41.

Sivagurunathan, Y., Harman, M., and Danicic, S. (1997). Slicing, I/O and the Implicit
State. In International Workshop on Automated Debugging, pages 59–65.

Smith, E. K., Barr, E., Le Goues, C., and Brun, Y. (2015). Is the Cure Worse than
the Disease? Over�tting in Automated Program Repair. In Joint Meeting of the

European Software Engineering Conference and the Symposium on the Foundations

of Software Engineering, ESEC/FSE ’15, pages 532–543, Bergamo, Italy.

Soto, M., Thung, F., Wong, C.-P., Le Goues, C., and Lo, D. (2016). A deeper look
into bug �xes: patterns, replacements, deletions, and additions. In International

Conference on Mining Software Repositories, MSR ’16, pages 512–515.

Stolee, K. T., Elbaum, S., and Dobos, D. (2014). Solving the search for source code.
ACM Transactions on Software Engineering and Methodology (TOSEM), 23(3):26.

Takada, T., Ohata, F., and Inoue, K. (2002). Dependence-cache slicing: a program
slicing method using lightweight dynamic information. In InternationalWorkshop

on Program Comprehension, IWPC ’02, pages 169–177.

Tan, H. B. K. and Ling, T. W. (1998). Correct program slicing of database operations.
IEEE Software, 15(2):105.

Tan, S. H. and Roychoudhury, A. (2015). Reli�x: Automated Repair of Software
Regressions. In International Conference on Software Engineering, ICSE ’15, pages
471–482.

Tan, S. H., Yi, J., Yulis, Mechtaev, S., and Roychoudhury, A. (2017). Code�aws: A
Programming Competition Benchmark for Evaluating Automated Program Re-
pair Tools. In ICSE ’17 Poster. To appear.

Tan, S. H., Yoshida, H., Prasad, M. R., and Roychoudhury, A. (2016). Anti-patterns
in Search-Based Program Repair. In International Symposium on Foundations of

Software Engineering, FSE ’16.

Thung, F., Lo, D., and Jiang, L. (2012). Automatic Defect Categorization. In Working

Conference on Reverse Engineering (WCRE), WCRE ’12, pages 205–214. IEEE.

225

BIBLIOGRAPHY

Timperley, C. S. (2013). Re�ective Method Matching for Object-Oriented Programs.
Master’s thesis, University of York, York, England.

Timperley, C. S. and Stepney, S. (2014). Re�ective Grammatical Evolution. In ALife

XIV, pages 71–78. MIT Press.

Vargha, A. and Delaney, H. D. (2000). A Critique and Improvement of the CL Com-
mon Language E�ect Size Statistics of McGraw and Wong. Journal of Educational
and Behavioral Statistics, 25(2):101–132.

Venkatesh, G. A. (1991). The Semantic Approach to Program Slicing. SIGPLAN

Notices, 26(6):107–119.

Walcott, K. R., So�a, M. L., Kapfhammer, G. M., and Roos, R. S. (2006). Time-Aware
Test Suite Prioritization. In International Symposium on Software Testing and Anal-

ysis, ISSTA ’06, pages 1–12.

Wei, Y., Pei, Y., Furia, C. A., Silva, L. S., Buchholz, S., Meyer, B., and Zeller, A. (2010).
Automated Fixing of Programs with Contracts. pages 61–72.

Weimer, W., Fry, Z. P., and Forrest, S. (2013). Leveraging program equivalence for
adaptive program repair: Models and �rst results. In International Conference on

Automated Software Engineering, ASE ’13, pages 356–366.

Weimer, W., Nguyen, T., Le Goues, C., and Forrest, S. (2009). Automatically Find-
ing Patches Using Genetic Programming. In International Conference on Software

Engineering, ICSE ’09, pages 364–374.

Weiser, M. (1979). Program slices: formal, psychological, and practical investigations

of an automatic program abstraction method. PhD thesis, University of Michigan.

Weiser, M. (1981). Program Slicing. In International Conference on Software Engi-

neering, ICSE ’81, pages 439–449.

Willmor, D., Embury, S. M., and Shao, J. (2004). Program Slicing in the Presence of
a Database State. In International Conference on Software Maintenance, ICSM ’04,
pages 448–452.

Xuan, J., Martinez, M., DeMarco, F., Clément, M., Marcote, S. L., Durieux, T., Berre,
D. L., and Monperrus, M. (2017). Nopol: Automatic Repair of Conditional State-
ment Bugs in Java Programs. IEEE Transactions on Software Engineering, 43(1):34–
55.

Yan, X. and Han, J. (2002). gSpan: Graph-Based Substructure Pattern Mining. In
International Conference on Data Mining, ICDM ’02, pages 721–.

Yoo, S. (2012). Evolving Human Competitive Spectra-Based Fault Localisation Tech-
niques. In Search Based Software Engineering, Lecture Notes in Computer Science,
pages 244–258. Springer Berlin Heidelberg.

Zeller, A. and Hildebrandt, R. (2002). Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering, 28(2):183–200.

226

	Abstract
	Acknowledgements
	Declaration
	Introduction
	Motivation
	Challenges
	Research Questions
	Contributions
	Document Structure

	Background
	Automated Program Repair
	Search-Based Repair
	Semantics-Based Repair
	Specification-Based Repair
	Related Techniques
	Concluding Remarks

	Tools and Techniques
	Bug Scenarios
	Pythia
	RepairBox
	Methodology
	Conclusion

	Fault Localisation
	Background
	Analysis
	Approach
	Discussion & Conclusion

	Repair Model
	Related Work
	Motivation for Study
	Methodology
	Repair Model
	Approach
	Results
	Discussion & Conclusion

	Search
	Related Work
	Theoretical Analysis
	Empirical Study
	Greedy Algorithm
	Future Work
	Conclusion

	Conclusion
	Summary
	Future Work
	Concluding Remarks

	Appendices
	Reproducibility
	Fault Localisation
	Repair Model
	Search

	Repair Action Mining
	AST and Edit Script Generation
	Detection Rules

	Additional Fault Localisation Results
	Bibliography

